Hydrogen production from steam and dry reforming of methane-ethane-glycerol: A thermodynamic comparative analysis

被引:34
|
作者
Khor, S. C. [1 ]
Jusoh, M. [1 ]
Zakaria, Z. Y. [1 ,2 ]
机构
[1] Univ Teknol Malaysia, Sch Chem & Energy Engn, Skudai, Johor, Malaysia
[2] Univ Teknol Malaysia, Ctr Engn Educ, Skudai, Johor, Malaysia
来源
关键词
Hydrogen production; Steam reforming; Dry reforming; Thermodynamic analysis; Glycerol utilization; EXERGOENVIRONMENTAL ANALYSIS; BIODIESEL;
D O I
10.1016/j.cherd.2022.02.015
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Glycerol is produced as a by-product waste during the biodiesel manufacturing process. In recent researches, glycerol has been extensively studied for its potential to be converted into higher value-added compounds because it is renewable and bioavailable compound to reduce the high biodiesel production cost. As a result, various methods and technologies, such as steam reforming and dry reforming, were utilized to convert glycerol to higher value added products. The straightforward route of dry and steam reforming techniques uses carbon dioxide and other greenhouse gases to create added-value products like syngas, which may be considered renewable alternatives to fossil fuels as global CO2 emission issues get higher and near-uncontrollable. Therefore, this article presents a novel thermodynamic equilibrium analysis of steam and dry reforming with methane-ethane-glycerol mixture based on the total Gibbs free energy minimization method for hydrogen generation. Equilibrium product compositions were determined as a function of molar ratio between H2O/methane-ethane-glycerol (WMEG) from 1:1 to 12:1 and CO2/methane-ethane-glycerol (CMEG) from 1:1 to 12:1 for steam and dry reforming respectively, where the molar basis of the methane-ethane-glycerol mixture is 1:1:1. The reforming temperatures are ranged from 573 K to 1273 K at atmospheric pressure of 1 bar. The production trends of H-2, CO, CO2, CH4 and C were compared between both reforming of glycerol. From to the result of the study, the optimal operating parameter for the highest hydrogen production was under steam reforming with WMEG of 3:1 at 1273 K and zero carbon deposition is achieved. In comparison with CO and CO2 production, dry reforming produced higher yields than steam reforming. Furthermore, a significant increment of hydrogen production was not observed at higher ratios of WMEG and CMEG. Steam reforming inhibited the carbon formation thermodynamically better than dry reforming.(c) 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:178 / 189
页数:12
相关论文
共 50 条
  • [21] Comparative analysis on sorption enhanced steam reforming and conventional steam reforming of hydroxyacetone for hydrogen production: Thermodynamic modeling
    Fu, Peng
    Yi, Weiming
    Li, Zhihe
    Li, Yanmei
    Wang, Jing
    Bai, Xueyuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (27) : 11893 - 11901
  • [22] Thermodynamic analysis of methane steam reforming heated by high temperature helium for hydrogen production
    Wang, Feng
    Zhou, Jing
    Li, Long-Jian
    Wang, Feng, 1600, Science Press (35): : 1581 - 1585
  • [23] Thermodynamic analysis of hydrogen production via glycerol steam reforming with CO2 adsorption
    Li, Yunhua
    Wang, Wenju
    Chen, Binghui
    Cao, Yingyu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (15) : 7768 - 7777
  • [24] Thermodynamic analysis of hydrogen production via glycerol steam reforming with CO2 adsorption
    Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
    不详
    不详
    Int J Hydrogen Energy, 15 (7768-7777):
  • [25] Steam reforming of ethanol for hydrogen production: Thermodynamic analysis
    Vasudeva, K
    Mitra, N
    Umasankar, P
    Dhingra, SC
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1996, 21 (01) : 13 - 18
  • [26] Hydrogen production from steam-methanol reforming: thermodynamic analysis
    Lwin, Y
    Daud, WRW
    Mohamad, AB
    Yaakob, Z
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (01) : 47 - 53
  • [27] Thermodynamic analysis of hydrogen production from oxidative steam reforming of ethanol
    Liu, Shuo
    Zhang, Ke
    Fang, Lining
    Li, Yongdan
    ENERGY & FUELS, 2008, 22 (02) : 1365 - 1370
  • [28] A comparative study on hydrogen production from steam-glycerol reforming: thermodynamics and experimental
    Chen, Haisheng
    Ding, Yulong
    Cong, Ngoc T.
    Dou, Binlin
    Dupont, Valerie
    Ghadiri, Mojtaba
    Williams, Paul T.
    RENEWABLE ENERGY, 2011, 36 (02) : 779 - 788
  • [29] Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol
    Yang, Guangxing
    Yu, Hao
    Peng, Feng
    Wang, Hongjuan
    Yang, Jian
    Xie, Donglai
    RENEWABLE ENERGY, 2011, 36 (08) : 2120 - 2127
  • [30] Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production
    Chen, Haisheng
    Zhang, Tianfu
    Dou, Bilin
    Dupont, Valerie
    Williams, Paul
    Ghadiri, Mojtaba
    Ding, Yulong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (17) : 7208 - 7222