A dispersive-fitted and dissipative-fitted explicit Runge-Kutta method for the numerical solution of orbital problems

被引:27
|
作者
Anastassi, ZA [1 ]
Simos, TE [1 ]
机构
[1] Univ Peloponnese, Fac Sci & Technol, Dept Comp Sci & Technol, GR-22100 Tripolis, Greece
关键词
methods : numerical; dispersion-fitting; dissipation-fitting; orbital problems; Runge-Kutta methods; explicit methods;
D O I
10.1016/j.newast.2004.04.005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a new explicit Runge-Kutta method of fourth algebraic order with minimum error of the fifth algebraic order (whose limit is zero, when the step-length tends to zero) and infinite order of dispersion and dissipation. The numerical results of a wide range of methods when these are applied to well-known periodic orbital problems show the efficiency of the new constructed method. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 50 条
  • [31] An embedded exponentially-fitted Runge-Kutta method for the numerical solution of the Schrodinger equation and related periodic initial-value problems
    Avdelas, G
    Simos, TE
    Vigo-Aguiar, J
    COMPUTER PHYSICS COMMUNICATIONS, 2000, 131 (1-2) : 52 - 67
  • [32] Exponentially-fitted Runge-Kutta third algebraic order methods for the numerical solution of the Schrodinger equation and related problems
    Simos, TE
    Williams, PS
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (05): : 839 - 851
  • [33] Exponentially-Fitted Runge-Kutta Nystrom Method of Order Three for Solving Oscillatory Problems
    Rabiei, Faranak
    Ismail, Fudziah
    Senu, Norazak
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 17 - 24
  • [34] An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions
    Simos, TE
    COMPUTER PHYSICS COMMUNICATIONS, 1998, 115 (01) : 1 - 8
  • [35] A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems
    Fang, Yonglei
    Wu, Xinyuan
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 178 - 185
  • [36] A new phase-fitted modified Runge-Kutta pair for the numerical solution of the radial Schrodinger equation
    Fang, Yonglei
    You, Xiong
    Ming, Qinghe
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 432 - 441
  • [37] A family of fifth algebraic order trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrodinger equation
    Simos, TE
    COMPUTATIONAL MATERIALS SCIENCE, 2005, 34 (04) : 342 - 354
  • [38] Numerical Study on Phase-Fitted and Amplification-Fitted Diagonally Implicit Two Derivative Runge-Kutta Method for Periodic IVPs
    Senu, Norazak
    Ahmad, Nur Amirah
    Ibrahim, Zarina Bibi
    Othman, Mohamed
    SAINS MALAYSIANA, 2021, 50 (06): : 1799 - 1814
  • [39] Exponentially Fitted and Trigonometrically Fitted Explicit Modified Runge-Kutta Type Methods for Solving y′′′x=fx,y,y′
    Ghawadri N.
    Senu N.
    Ismail F.
    Ibrahim Z.B.
    Senu, N. (norazak@upm.edu.my), 2018, Hindawi Limited (2018)
  • [40] A Runge-Kutta Method with Zero Phase-Lag and Derivatives for the Numerical Solution of Orbital Problems
    Papadopoulos, D. F.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1399 - 1402