Nano-kirigami with giant optical chirality

被引:243
|
作者
Liu, Zhiguang [1 ,4 ]
Du, Huifeng [2 ]
Li, Jiafang [1 ]
Lu, Ling [1 ]
Li, Zhi-Yuan [3 ]
Fang, Nicholas X. [2 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] South China Univ Technol, Coll Phys & Optoelect, Guangzhou 510640, Guangdong, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 07期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ION-IMPLANTATION; METAMATERIALS; FABRICATION; NANOSTRUCTURES; FREQUENCIES; BEAM; MEMS;
D O I
10.1126/sciadv.aat4436
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Kirigami enables versatile shape transformation from two-dimensional (2D) precursors to 3D architectures with simplified fabrication complexity and unconventional structural geometries. We demonstrate a one-step and on-site nano-kirigami method that avoids the prescribed multistep procedures in traditional mesoscopic kirigami or origami techniques. The nano-kirigami is readily implemented by in situ cutting and buckling a suspended gold film with programmed ion beam irradiation. By using the topography-guided stress equilibrium, rich 3D shape transformation such as buckling, rotation, and twisting of nanostructures is precisely achieved, which can be predicted by our mechanical modeling. Benefiting from the nanoscale 3D twisting features, giant optical chirality is achieved in an intuitively designed 3D pinwheel-like structure, in strong contrast to the achiral 2D precursor without nano-kirigami. The demonstrated nano-kirigami, as well as the exotic 3D nanostructures, could be adopted in broad nanofabrication platforms and could open up new possibilities for the exploration of functional micro-/nanophotonic and mechanical devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Reversible optical transcription of supramolecular chirality into molecular chirality
    de Jong, JJD
    Lucas, LN
    Kellogg, RM
    van Esch, JH
    Feringa, BL
    SCIENCE, 2004, 304 (5668) : 278 - 281
  • [42] Chirality in giant phospholipid tubule formation.
    Thomas, BN
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U278 - U278
  • [43] Light with enhanced optical chirality
    Rosales-Guzman, Carmelo
    Volke-Sepulveda, Karen
    Torres, Juan P.
    OPTICS LETTERS, 2012, 37 (17) : 3486 - 3488
  • [44] Chirality and Antiferromagnetism in Optical Metasurfaces
    Huang, Kun
    CHIRALITY, MAGNETISM AND MAGNETOELECTRICITY: SEPARATE PHENOMENA AND JOINT EFFECTS IN METAMATERIAL STRUCTURES, 2021, 138 : 75 - 103
  • [45] Optical manifestations of planar chirality
    Papakostas, A
    Potts, A
    Bagnall, DM
    Prosvirnin, SL
    Coles, HJ
    Zheludev, NI
    PHYSICAL REVIEW LETTERS, 2003, 90 (10) : 1 - 107404
  • [46] Generation of Hot Electrons with Chiral Metamaterial Perfect Absorbers: Giant Optical Chirality for Polarization-Sensitive Photochemistry
    Wang, Wenhao
    Besteiro, Lucas V.
    Liu, Tianji
    Wu, Cuo
    Sun, Jiachen
    Yu, Peng
    Chang, Le
    Wang, Zhiming
    Govorov, Alexander O.
    ACS PHOTONICS, 2019, 6 (12) : 3241 - 3252
  • [47] The effective model of chirality-chirality correlations of the system of magnetized nano-loops
    Horváth, D
    Gmitra, M
    Baláz, P
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 : D117 - D120
  • [48] Giant chirality-induced spin selectivity of polarons
    Klein, Dan
    Michaeli, Karen
    PHYSICAL REVIEW B, 2023, 107 (04)
  • [49] Fractal nano-composites: Giant local-field enhancement of optical responses
    Shalaev, VM
    NANOSCALE LINEAR AND NONLINEAR OPTICS, 2001, 560 : 237 - 258
  • [50] Generating nano-incised graphene kirigami membrane via selective tearing
    Lu, Shuaijie
    Gao, Yuan
    Chen, Weiqiang
    Zhang, Jinyuan
    Wang, Ziheng
    Zhang, Jun
    Liu, Yanming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 313