A Transcritical CO2 Rankine Cycle With LNG Cold Energy Utilization and Liquefaction of CO2 in Gas Turbine Exhaust

被引:33
|
作者
Lin, Wensheng [1 ]
Huang, Meibin [1 ]
He, Hongming [1 ]
Gu, Anzhong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
关键词
transcritical CO2 Rankine cycle; LNG; CO2 recovery by liquefaction; physical exergy;
D O I
10.1115/1.4000176
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A novel transcritical Rankine cycle is presented in this paper This cycle adopts CO2 as its working fluid with exhaust from a gas turbine as its heat source and liquefied natural gas (LNG) as its cold sink. With CO2 working transcritically, large temperature difference for the Rankine cycle is realized. Moreover, the CO2 in the gas turbine exhaust is further cooled and liquefied by LNG after transferring heat to the Rankine cycle. In this way, not only is the cold energy utilized but also a large part of the CO2 is recovered from burning of the vaporized LNG. In this paper the system performance of this transcritical cycle is calculated. The influences of the highest cycle temperature and pressure to system specific work, exergy efficiency, and liquefied CO2 mass flow rate are analyzed. The exergy loss in each of the heat exchangers is also discussed. It turns out that this kind of CO2 cycle is energy-conservative and environment-friendly. [DOI: 10.1115/1.4000176]
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A Combination of CO2 Transcritical Cycle with Desiccant Cooling
    Wang, Jinggang
    Kang, Ligai
    Liu, Jie
    Yin, Zhenjiang
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1962 - 1966
  • [42] Study on a near-zero emission SOFC-based multi-generation system combined with organic Rankine cycle and transcritical CO2 cycle for LNG cold energy recovery
    Liang, Wenxing
    Yu, Zeting
    Bai, Shuzhan
    Li, Guoxiang
    Wang, Daohan
    ENERGY CONVERSION AND MANAGEMENT, 2022, 253
  • [43] Solar energy powered Rankine cycle using supercritical CO2
    Yamaguchi, H.
    Zhang, X. R.
    Fujima, K.
    Enomoto, M.
    Sawada, N.
    APPLIED THERMAL ENGINEERING, 2006, 26 (17-18) : 2345 - 2354
  • [44] Experimental investigation on the CO2 transcritical power cycle
    Pan, Lisheng
    Li, Bo
    Wei, Xiaolin
    Li, Teng
    ENERGY, 2016, 95 : 247 - 254
  • [45] Energy and exergy analysis of supercritical/transcritical CO2 cycles for water injected hydrogen gas turbine
    Qi, Yinke
    Huang, Diangui
    ENERGY, 2022, 260
  • [46] Study on off-design performance of transcritical CO2 power cycle for the utilization of geothermal energy
    Li, Hang
    Yang, Yi
    Cheng, Ziyang
    Sang, Yiqian
    Dai, Yiping
    GEOTHERMICS, 2018, 71 : 369 - 379
  • [47] Advanced exergy analysis of an integrated energy storage system based on transcritical CO2 energy storage and Organic Rankine Cycle
    Zhang, Yuan
    Liang, Tianyang
    Yang, Chao
    Zhang, Xuelai
    Yang, Ke
    ENERGY CONVERSION AND MANAGEMENT, 2020, 216
  • [48] Performance analysis and multi-objective optimization of CO2 transcritical Rankine cycle systems driven by solar energy
    Cui, Xuyang
    Wang, Yuanchao
    Yang, Junlan
    Li, Yifan
    Han, Yifei
    Yin, Ming
    SOLAR ENERGY, 2025, 286
  • [49] Transcritical CO2 power cycle - Effects of regenerative heating using turbine bleed gas at intermediate pressure
    Mondal, Subha
    De, Sudipta
    ENERGY, 2015, 87 : 95 - 103
  • [50] A Comparison Between Organic Rankine Cycle and Supercritical CO2 Bottoming Cycles for Energy Recovery From Industrial Gas Turbines Exhaust Gas
    Ancona, Alessandra Maria
    Bianchi, Michele
    Branchini, Lisa
    De Pascale, Andrea
    Melino, Francesco
    Peretto, Antonio
    Torricelli, Noemi
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2021, 143 (12):