A Transcritical CO2 Rankine Cycle With LNG Cold Energy Utilization and Liquefaction of CO2 in Gas Turbine Exhaust

被引:33
|
作者
Lin, Wensheng [1 ]
Huang, Meibin [1 ]
He, Hongming [1 ]
Gu, Anzhong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
关键词
transcritical CO2 Rankine cycle; LNG; CO2 recovery by liquefaction; physical exergy;
D O I
10.1115/1.4000176
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A novel transcritical Rankine cycle is presented in this paper This cycle adopts CO2 as its working fluid with exhaust from a gas turbine as its heat source and liquefied natural gas (LNG) as its cold sink. With CO2 working transcritically, large temperature difference for the Rankine cycle is realized. Moreover, the CO2 in the gas turbine exhaust is further cooled and liquefied by LNG after transferring heat to the Rankine cycle. In this way, not only is the cold energy utilized but also a large part of the CO2 is recovered from burning of the vaporized LNG. In this paper the system performance of this transcritical cycle is calculated. The influences of the highest cycle temperature and pressure to system specific work, exergy efficiency, and liquefied CO2 mass flow rate are analyzed. The exergy loss in each of the heat exchangers is also discussed. It turns out that this kind of CO2 cycle is energy-conservative and environment-friendly. [DOI: 10.1115/1.4000176]
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A TRANSCRITICAL CO2 RANKINE CYCLE WITH LNG COLD ENERGY UTILIZATION AND LIQUEFACTION OF CO2 IN GAS TURBINE EMISSION
    Huang, Meibin
    Lin, Wensheng
    He, Hongming
    Gu, Anzhong
    ES2008: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 2, 2009, : 231 - 237
  • [2] An Engine Exhaust Utilization System by Combining CO2 Brayton Cycle and Transcritical Organic Rankine Cycle
    Ma, Haoyuan
    Liu, Zhan
    SUSTAINABILITY, 2022, 14 (03)
  • [3] Off-design performance analysis of a transcritical CO2 Rankine cycle with LNG as cold source
    Wang, Jianyong
    Wang, Jiangfeng
    Dai, Yiping
    Zhao, Pan
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2017, 14 (09) : 774 - 783
  • [4] Thermodynamic analysis of a hybrid energy system based on CAES system and CO2 transcritical power cycle with LNG cold energy utilization
    Zhao, Pan
    Wang, Jiangfeng
    Dai, Yiping
    Gao, Lin
    APPLIED THERMAL ENGINEERING, 2015, 91 : 718 - 730
  • [5] Zero carbon emission and cold energy recovery: Thermodynamic evaluation of a combined ammonia gas turbine and transcritical CO2 cycle
    Chen, Kai
    Liang, Shiqiang
    Zhang, Shijie
    Shen, Zhixuan
    Wang, Bo
    ENERGY, 2024, 313
  • [6] PERFORMANCE IMPROVEMENT OF A SUPERCRITICAL CO2 AND TRANSCRITICAL CO2 COMBINED CYCLE FOR OFFSHORE GAS TURBINE WASTE HEAT RECOVERY
    Zhou, Aozheng
    Ren, Xiaodong
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 11, 2020,
  • [7] Preliminary investigation of a transcritical CO2 heat pump driven by a solar-powered CO2 Rankine cycle
    Li, Xiao-Juan
    Zhang, Xin-Rong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (11) : 1361 - 1371
  • [8] Thermodynamic research on transcritical rankine cycle using CO2 and CO2-based mixtures
    Xie H.
    Yang Y.
    Rao Z.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2021, 52 (01): : 160 - 167
  • [9] Thermodynamic analysis and optimization of a transcritical CO2 geothermal power generation system based on the cold energy utilization of LNG
    Wang, Jianyong
    Wang, Jiangfeng
    Dai, Yiping
    Zhao, Pan
    APPLIED THERMAL ENGINEERING, 2014, 70 (01) : 531 - 540
  • [10] Improvement design and analysis of a supercritical CO2/transcritical CO2 combined cycle for offshore gas turbine waste heat recovery
    Zhou, Aozheng
    Li, Xue-song
    Ren, Xiao-dong
    Gu, Chun-wei
    ENERGY, 2020, 210