Asymptotic behavior of a semilinear problem in heat conduction with long time memory and non-local diffusion

被引:22
|
作者
Xu, Jiaohui [1 ]
Caraballo, Tomas [1 ]
Valero, Jose [2 ]
机构
[1] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, C-Tarfia s-n, 41012 Seville, Spain
[2] Avda Univ, Univ Miguel Hernandez, Ctr Invest Operat, s-n, 03202 Elche, Spain
关键词
Non-local partial differential equations; Long time memory; Dafermos transformation; Global attractors; ATTRACTORS; EQUATIONS;
D O I
10.1016/j.jde.2022.04.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the asymptotic behavior of a semilinear heat equation with long time memory and nonlocal diffusion is analyzed in the usual set-up for dynamical systems generated by differential equations with delay terms. This approach is different from ones used in the previous published literature on the long time behavior of heat equations with memory, which is carried out by the Dafermos transformation. As a consequence, the obtained results provide complete information about the attracting sets for the original problem, instead of the transformed one. In particular, the proved results also generalize and complete previous literature in the local case. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:418 / 447
页数:30
相关论文
共 50 条
  • [31] Heat Diffusion in a Non-Local Tokomak Stochastic Magnetic Field
    Hong Gao
    Li Yao
    Haiyang Zhong
    Wei Liu
    Kun Yang
    Ying Shao
    Wenwen Xia
    Qian li
    Journal of Fusion Energy, 2011, 30 : 195 - 198
  • [32] Lower bounds for the blow-up time in a non-local reaction-diffusion problem
    Song, J. C.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 793 - 796
  • [33] Asymptotic Behavior of a Non-Local Hyperbolic Equation Modelling Ohmic Heating
    Xianchao WANG 1
    2.Wuhan College
    数学研究及应用, 2012, 32 (04) : 476 - 484
  • [34] Long-time behavior of a semilinear wave equation with memory
    Feng, Baowei
    Pelicer, Mauricio L.
    Andrade, Doherty
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 13
  • [35] Long-time behavior of a semilinear wave equation with memory
    Baowei Feng
    Maurício L Pelicer
    Doherty Andrade
    Boundary Value Problems, 2016
  • [36] A non-local non-autonomous diffusion problem: linear and sublinear cases
    Tarcyana S. Figueiredo-Sousa
    Cristian Morales-Rodrigo
    Antonio Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [37] A non-local non-autonomous diffusion problem: linear and sublinear cases
    Figueiredo-Sousa, Tarcyana S.
    Morales-Rodrigo, Cristian
    Suarez, Antonio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [38] Stability, instability, and blowup for time fractional and other non-local in time semilinear subdiffusion equations
    Vergara, Vicente
    Zacher, Rico
    JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (01) : 599 - 626
  • [39] Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations
    Liu Yacheng
    Xu Runzhang
    Yu Tao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) : 3332 - 3348
  • [40] Long time asymptotic behavior of solution of difference scheme for a semilinear parabolic equation
    Feng, H
    Shen, LJ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1998, 16 (05) : 395 - 402