Reservoir Computing based Neural Image Filters

被引:0
|
作者
Ganguly, Samiran [1 ]
Gu, Yunfei [1 ]
Xie, Yunkun [1 ]
Stan, Mircea R. [1 ]
Ghosh, Avik W. [1 ]
Dhar, Nibir K. [2 ]
机构
[1] Univ Virginia, Charles L Brown Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
[2] US Army, Night Vis & Elect Sensors Directorate, Ft Belvoir, VA 22060 USA
关键词
Computer Vision; Machine Vision; Reservoir Computing; Echo-State Networks; Neuro-Adaptive Filtering;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Clean images are an important requirement for machine vision systems to recognize visual features correctly. However, the environment, optics, electronics of the physical imaging systems can introduce extreme distortions and noise in the acquired images. In this work, we explore the use of reservoir computing, a dynamical neural network model inspired from biological systems, in creating dynamic image filtering systems that extracts signal from noise using inverse modeling. We discuss the possibility of implementing these networks in hardware close to the sensors.
引用
收藏
页码:3206 / 3210
页数:5
相关论文
共 50 条
  • [21] Complex-Valued Neural Networks for Wave-Based Realization of Reservoir Computing
    Hirose, Akira
    Takeda, Seiji
    Yamane, Toshiyuki
    Nakano, Daiju
    Nakagawa, Shigeru
    Nakane, Ryosho
    Tanaka, Gouhei
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT IV, 2017, 10637 : 449 - 456
  • [22] Hybrid Convolutional Optoelectronic Reservoir Computing for Image Recognition
    Jacobson, Philip
    Shirao, Mizuki
    Yu, Kerry
    Su, Guan-Lin
    Wu, Ming C.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (03) : 692 - 699
  • [23] Reservoir computing: a photonic neural network for information processing
    Paquot, Yvan
    Dambre, Joni
    Schrauwen, Benjamin
    Haelterman, Marc
    Massar, Serge
    NONLINEAR OPTICS AND APPLICATIONS IV, 2010, 7728
  • [24] Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex
    Enel, Pierre
    Procyk, Emmanuel
    Quilodran, Rene
    Dominey, Peter Ford
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (06)
  • [25] Reservoir computing approaches to recurrent neural network training
    Lukosevicius, Mantas
    Jaeger, Herbert
    COMPUTER SCIENCE REVIEW, 2009, 3 (03) : 127 - 149
  • [26] Reservoir Computing Transformer for Image-Text Retrieval
    Li, Wenrui
    Ma, Zhengyu
    Deng, Liang-Jian
    Wang, Penghong
    Shi, Jinqiao
    Fan, Xiaopeng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5605 - 5613
  • [27] Are Probabilistic Spiking Neural Networks Suitable for Reservoir Computing?
    Schliebs, Stefan
    Mohemmed, Ammar
    Kasabov, Nikola
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 3156 - 3163
  • [28] Neuromorphic Computing Based on Silicon Photonics and Reservoir Computing
    Katumba, Andrew
    Freiberger, Matthias
    Laporte, Floris
    Lugnan, Alessio
    Sackesyn, Stijn
    Ma, Chonghuai
    Dambre, Joni
    Bienstman, Peter
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (06)
  • [29] Memristor-based Reservoir Computing
    Kulkarni, Manjari S.
    Teuscher, Christof
    PROCEEDINGS OF THE 2012 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), 2012, : 226 - 232
  • [30] Reservoir computing based on quenched chaos
    Choi, Jaesung
    Kim, Pilwon
    CHAOS SOLITONS & FRACTALS, 2020, 140