Eigenvalue sensitivity to system dimensions

被引:17
|
作者
Favorite, Jeffrey A. [1 ]
Bledsoe, Keith C. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
D O I
10.1016/j.anucene.2010.01.004
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Adjoint-based first-order sensitivity theory is applied to estimate the sensitivity of the k(eff) eigenvalue to system geometric dimensions. Macroscopic cross sections in the neighborhood of a material interface are expressed in terms of a Heaviside step function. Differentiating the transport and fission operators of the transport equation with respect to the location of the interface results in a Dirac delta function. The final equation for the sensitivity has the forward-adjoint product integrals evaluated on the unperturbed interface; these are multiplied groupwise by the cross-section differences across the interface. The equation applies to the sensitivity of k(eff) to the uniform expansion or contraction of a surface but not to a surface translation or rotation. The equation is related to an earlier one derived for internal interface perturbations in transport theory. The method is demonstrated and compared with direct perturbation calculations in spherical (r only) and cylindrical (r-z) geometries based on criticality benchmark experiments. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:522 / 528
页数:7
相关论文
共 50 条
  • [31] Sensitivity analysis of waveguide eigenvalue problems
    Burschaepers, N.
    Fiege, S.
    Schuhmann, R.
    Walther, A.
    ADVANCES IN RADIO SCIENCE, 2011, 9 : 85 - 89
  • [32] THE USEFUL DIMENSIONS OF SENSITIVITY
    GIBSON, JJ
    AMERICAN PSYCHOLOGIST, 1963, 18 (01) : 1 - 15
  • [33] STABILITY ANALYSIS OF A MODULATED AC/DC SYSTEM USING THE EIGENVALUE SENSITIVITY APPROACH.
    Choudhry, M.A.
    Emarah, A.S.
    Ellithy, K.A.
    Galanos, G.D.
    IEEE Transactions on Power Systems, 1986, PWRS-1 (02) : 128 - 137
  • [34] EIGENVALUE SENSITIVITY STUDY OF A HIGH-TEMPERATURE GAS-COOLED REACTOR SYSTEM
    GREENLEE, TL
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (03) : 422 - 423
  • [35] Existence of harmonic maps and eigenvalue optimization in higher dimensions
    Karpukhin, Mikhail
    Stern, Daniel
    INVENTIONES MATHEMATICAE, 2024, 236 (02) : 713 - 778
  • [36] Existence of harmonic maps and eigenvalue optimization in higher dimensions
    Mikhail Karpukhin
    Daniel Stern
    Inventiones mathematicae, 2024, 236 : 713 - 778
  • [37] On the approximation of dispersive electromagnetic eigenvalue problems in two dimensions
    Halla, Martin
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (01) : 535 - 559
  • [38] Eigenvalue bounds for polynomial central potentials in d dimensions
    Katatbeh, Qutaibeh D.
    Hall, Richard L.
    Saad, Nasser
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (44) : 13431 - 13442
  • [39] Eigenvalue bounds for a class of singular potentials in N dimensions
    Hall, RL
    Saad, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (01): : 133 - 138
  • [40] Hopf bifurcation and eigenvalue sensitivity analysis of doubly fed induction generator wind turbine system
    School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
    不详
    不详
    不详
    IEEE PES Gen. Meet., PES,