A Generalization of the Chebyshev Polynomials and Nonrooted Posets

被引:2
|
作者
Tomie, Masaya [1 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
关键词
MOBIUS FUNCTION; RATIONALITY;
D O I
10.1093/imrn/rnp158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we give a generalization of the Chebyshev polynomials of the first kind. Then we describe a Mobius function of the generalized subword order over P-s S is an element of N. These results give the affirmative answer for the conjecture proposed in [A. Bjorner and B. Sagan, "Rationality of the Mobius function of the composition poset," Theoretical Computer Science 359, no. 1-3 (2006): 282-98.] and [B. Sagan and V. Vatter, "The Mobius function of the composition poset," Journal of Algebraic Combinatorics 24, no. 2 (2006): 117-36].
引用
收藏
页码:856 / 881
页数:26
相关论文
共 50 条
  • [41] On modified Chebyshev polynomials
    Nadarajah, Saralees
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) : 1492 - 1494
  • [42] FACTORING CHEBYSHEV POLYNOMIALS
    Grubb, D. J.
    FIBONACCI QUARTERLY, 2014, 52 (04): : 360 - 366
  • [43] Invariants and Chebyshev polynomials
    V. A. Yudin
    Proceedings of the Steklov Institute of Mathematics, 2009, 266 : 227 - 245
  • [44] An Extension of the Chebyshev Polynomials
    Anna Tatarczak
    Complex Analysis and Operator Theory, 2016, 10 : 1519 - 1533
  • [45] On Chebyshev polynomials and their applications
    Xingxing Lv
    Shimeng Shen
    Advances in Difference Equations, 2017
  • [46] A note on Chebyshev polynomials
    Dattoli G.
    Sacchetti D.
    Cesarano C.
    Annali dell’Università di Ferrara, 2001, 47 (1): : 107 - 115
  • [47] The Resultant of Chebyshev Polynomials
    Jacobs, David P.
    Rayes, Mohamed O.
    Trevisan, Vilmar
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (02): : 288 - 296
  • [48] On a generalization of the Euler-Chebyshev method for simultaneous extraction of only a part of all roots of polynomials
    Iliev, A
    Kyurkchiev, N
    Fang, Q
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2006, 23 (01) : 63 - 73
  • [49] On a generalization of the Euler-Chebyshev method for simultaneous extraction of only a part of all roots of polynomials
    Anton Iliev
    Nikolay Kyurkchiev
    Qing Fang
    Japan Journal of Industrial and Applied Mathematics, 2006, 23
  • [50] Some applications of the Chebyshev polynomials to polynomials in general
    Jameson, G. J. O.
    MATHEMATICAL GAZETTE, 2025, 109 (574): : 93 - 100