Cause investigation of high-mode vortex-induced vibration in a long-span suspension bridge

被引:74
|
作者
Hwang, You Chan [1 ]
Kim, Sunjoong [2 ,3 ]
Kim, Ho-Kyung [1 ,4 ]
机构
[1] Seoul Natl Univ, Dept Civil & Environm Engn, Seoul, South Korea
[2] Seoul Natl Univ, Korea Bridge Design & Engn Res Ctr, Seoul, South Korea
[3] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL USA
[4] Seoul Natl Univ, Inst Construct & Environm Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Vortex-induced vibration (VIV); suspension bridges; damping; operational modal analysis (OMA); frequency domain decomposition (FDD); CABLE-STAYED BRIDGES; DAMPING ESTIMATION; IDENTIFICATION; EXCITATION;
D O I
10.1080/15732479.2019.1604771
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A significant vortex-induced vibration (VIV) was observed in a suspension bridge under a wind velocity of approximately 6 and 7 m/s, and with a maximum amplitude that exceeded the serviceability limitations. Since the observation of VIV in an operating bridge was an infrequent event, this study investigated the cause of unexpected VIV. A series of wind tunnel tests revealed the main cause of the VIV was temporary screens applied over the guardrails to shield the curing surface during replacement of epoxy-coated pavement. The characteristics of the measured VIV were consistent with those from experimental results in terms of amplitude and lock-in wind speed range. The effect of Scruton numbers on VIV amplitude was examined for several dominant modes with different modal mass and damping ratios. Since the VIV amplitude is sensitive to the inherent damping ratio, the modal damping ratios of the bridge were identified from output-only modal analysis by using the frequency domain decomposition. This approach was efficient in identifying the damping ratios of high modes that were challenging due to weakly excited signals. The damping ratio of the triggered mode for VIV was the lowest among the investigated modes and estimated to be the level of the design-damping ratio.
引用
收藏
页码:84 / 93
页数:10
相关论文
共 50 条
  • [41] Parameters optimization and performance evaluation of multiple tuned mass dampers to mitigate the vortex-induced vibration of a long-span bridge
    Peng, Sijie
    Zhang, Lianzhen
    Liu, Yu
    Li, Shunlong
    STRUCTURES, 2022, 38 : 1595 - 1606
  • [42] Experimental Investigation on Vortex-Induced Vibration Mitigation of Stay Cables in Long-Span Bridges Equipped with Damped Crossties
    Liu, Min
    Yang, Wenhan
    Chen, Wenli
    Xiao, Huigang
    Li, Hui
    JOURNAL OF AEROSPACE ENGINEERING, 2019, 32 (05)
  • [43] Examination of occurrence probability of vortex-induced vibration of long-span bridge decks by Fokker-Planck-Kolmogorov equation
    Cui, Wei
    Caracoglia, Luca
    Zhao, Lin
    Ge, Yaojun
    STRUCTURAL SAFETY, 2023, 105
  • [44] Spanwise layout optimization of aerodynamic countermeasures for multi-mode vortex-induced vibration control on long-span bridges
    Sun, Hao
    Zhu, Le-Dong
    Tan, Zhong-Xu
    Zhu, Qing
    Meng, Xiao-Liang
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2024, 244
  • [45] Prediction of vortex-induced wind loading on long-span bridges
    Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68 : 267 - 278
  • [46] Experimental study on high-mode vortex-induced vibration of stay cable and its aerodynamic countermeasures
    Liu, Zhiwen
    Shen, Jingsi
    Li, Shuqiong
    Chen, Zhengqing
    Ou, Qingbao
    Xin, Dabo
    JOURNAL OF FLUIDS AND STRUCTURES, 2021, 100
  • [47] A Data-Driven Model for Predictive Modeling of Vortex-Induced Vibrations of a Long-Span Bridge
    Wang, Yafei
    Feng, Hui
    Xu, Nan
    Zhong, Jiwei
    Wang, Zhengxing
    Yao, Wenfan
    Jiang, Yuyin
    Laima, Shujin
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [48] Prediction of vortex-induced wind loading on long-span bridges
    Lee, S
    Lee, JS
    Kim, JD
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1997, 67-8 : 267 - 278
  • [49] Using supervised learning techniques to automatically classify vortex-induced vibration in long-span bridges
    Lim, Jaeyeong
    Kim, Sunjoong
    Kim, Ho-Kyung
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2022, 221
  • [50] Indirect monitoring of vortex-induced vibration of suspension bridge hangers
    Cantero, Daniel
    Oiseth, Ole
    Ronnquist, Anders
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2018, 17 (04): : 837 - 849