On domination number of Cartesian product of directed cycles

被引:16
|
作者
Liu, Juan [1 ,2 ]
Zhang, Xindong [2 ]
Chen, Xing [1 ]
Meng, Jixiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[2] Xinjiang Normal Univ, Coll Maths Phys & Informat Sci, Urumqi 830046, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Cartesian product; Domination number; Combinatorial problems;
D O I
10.1016/j.ipl.2009.11.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let gamma(G) denote the domination number of a digraph G and let C-m square C-n denote the Cartesian product of C-m and C-n, the directed cycles of length m, n >= 2. In this paper, we determine the exact values: gamma(C-2 square C-n) = n; gamma(C-3 square C-n) = n if n equivalent to 0 (mod 3), otherwise, gamma(C-3 square C-n) = n + 1: gamma(C-4 square C-n) = 3n/2 if n equivalent to 0 (mod 8), otherwise, gamma(C-4 square C-n) = n + inverted right perpendicularn+1/2inverted left perpendicular. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 173
页数:3
相关论文
共 50 条
  • [31] Roman domination number of the Cartesian products of paths and cycles
    Pavlic, Polona
    Zerovnik, Janez
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [32] On the domination number of the product of two cycles
    El-Zahar, Mohamed H.
    Shaheen, Ramy S.
    ARS COMBINATORIA, 2007, 84 : 51 - 64
  • [33] Hyperhamiltonicity of the Cartesian product of two directed cycles
    Miller, M
    ARS COMBINATORIA, 2006, 79 : 269 - 275
  • [34] Double total domination number of Cartesian product of paths
    Li, Linyu
    Yue, Jun
    Zhang, Xia
    AIMS MATHEMATICS, 2023, 8 (04): : 9506 - 9519
  • [36] ON THE TOTAL SIGNED DOMINATION NUMBER OF THE CARTESIAN PRODUCT OF PATHS
    Gao, Hong
    Zhang, Qingfang
    Yang, Yuansheng
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (02) : 52 - 62
  • [37] On decomposition of the Cartesian product of directed cycles into cycles of equal lengths
    Bogdanowicz, Zbigniew R.
    DISCRETE APPLIED MATHEMATICS, 2017, 229 : 148 - 150
  • [38] BBM ALGORITHM FOR SIGNED MIXED DOMINATION IN CARTESIAN PRODUCT OF CYCLES
    Gao, Hong
    Liu, Enmao
    Yang, Yuansheng
    Liu, Wei
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2019, 15 (04): : 1507 - 1520
  • [39] BINDING NUMBER OF THE CARTESIAN PRODUCT OF 2 CYCLES
    GUICHARD, DR
    ARS COMBINATORIA, 1985, 19 (JUN) : 175 - 178
  • [40] Italian Domination Number of Strong Product of Cycles
    Wei, Liyang
    Li, Feng
    IAENG International Journal of Applied Mathematics, 2024, 54 (04) : 791 - 796