A LEVEL-SET APPROACH FOR TRACKING OBJECTS IN IMAGE SEQUENCES USING A LEVEL CONSERVATION CONSTRAINT: APPLICATION TO CARDIAC SEQUENCES

被引:0
|
作者
Dietenbeck, T. [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Barbosa, D. [3 ,4 ,5 ,6 ,7 ,8 ]
Alessandrini, M. [8 ]
D'hooge, J. [8 ]
Friboulet, D. [3 ,4 ,5 ,6 ,7 ]
Bernard, O. [3 ,4 ,5 ,6 ,7 ]
机构
[1] Univ Auvergne, Clermont Univ, ISIT, F-63000 Clermont Ferrand, France
[2] CNRS, UMR6284, F-63000 Clermont Ferrand, France
[3] Univ Lyon, CREATIS, Lyon, France
[4] CNRS, UMR5220, F-75700 Paris, France
[5] INSERM, U1044, F-75654 Paris 13, France
[6] INSA Lyon, Lyon, France
[7] Univ Lyon 1, F-69622 Villeurbanne, France
[8] Katholieke Univ Leuven, Cardiovasc Imaging & Dynam, Leuven, Belgium
关键词
Segmentation; tracking; active contour; level-set; shape prior; motion prior; cardiac imaging; SEGMENTATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Tracking of moving objects in an image sequence is an important task in many application (e.g. medical imaging, robotics). However, this task is usually difficult due to inherent problems that could happen in sequences (i.e. possible occlusion of the object, large interframe motion). In this paper, we describe a new approach to integrate a priori motion information into a level-set-based active contour approach. Specifically, we introduce a new constraint that enforces the conservation of the levels of the implicit function along the image sequence. This constraint is formulated as a motion prior energy and is used in a tracking algorithm. The method is validated quantitatively on a clinical application based on 10 echocardiographic and 5 cine-MRI sequences (approximate to 700 images).
引用
收藏
页码:863 / 866
页数:4
相关论文
共 50 条
  • [31] Automatic Segmentation of Polyps in Endoscopic Image Using Level-Set Formulation
    Dutta, Soumayan
    Sasmal, Pradipta
    Bhuyan, M. K.
    Iwahori, Yuji
    2018 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2018,
  • [32] A level-set method with a multiplicative-additive constraint model for image segmentation and bias correction
    Li, Zhixiang
    Tang, Shaojie
    Zeng, Yang
    Chai, Shijie
    Ye, Wenguang
    Yang, Fuqiang
    Huang, Kuidong
    KNOWLEDGE-BASED SYSTEMS, 2024, 297
  • [33] A level-set method for inhomogeneous image segmentation with application to breast thermography images
    Shamsi Koshki, Asma
    Ahmadzadeh, M. R.
    Zekri, M.
    Sadri, S.
    Mahmoudzadeh, E.
    IET IMAGE PROCESSING, 2021, 15 (07) : 1439 - 1458
  • [34] A level-set algorithm for tracking discontinuities in hyperbolic conservation laws I. Scalar equations
    Aslam, TD
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 167 (02) : 413 - 438
  • [35] Fast Image Segmentation Based on Single-parametric Level-Set Approach
    Xie, Qiang-Jun
    Zhang, Hua-Rong
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1788 - 1791
  • [36] Color object segmentation and tracking using flexible statistical model and level-set
    Sami Bourouis
    Ines Channoufi
    Roobaea Alroobaea
    Saeed Rubaiee
    Murad Andejany
    Nizar Bouguila
    Multimedia Tools and Applications, 2021, 80 : 5809 - 5831
  • [37] Color object segmentation and tracking using flexible statistical model and level-set
    Bourouis, Sami
    Channoufi, Ines
    Alroobaea, Roobaea
    Rubaiee, Saeed
    Andejany, Murad
    Bouguila, Nizar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (04) : 5809 - 5831
  • [38] Variational Level-Set Segmentation and Tracking of Left Ventricle Using Field Prior
    Afshin, Mariam
    Ben Ayed, Ismail
    Islam, Ali
    Ross, Ian
    Peters, Terry
    Li, Shuo
    MEDICAL IMAGING 2011: IMAGE PROCESSING, 2011, 7962
  • [39] An advection velocity correction scheme for interface tracking using the level-set method
    Satheesh, Kiran
    Srinivas, Gowtham
    Hemchandra, Santosh
    COMPUTERS & FLUIDS, 2018, 168 : 232 - 244
  • [40] Application of gcForest to visual tracking using UAV image sequences
    Liu, Fang
    Yang, Anzhe
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (19) : 27933 - 27956