Continuous Symmetry Breaking in 1D Long-Range Interacting Quantum Systems

被引:86
|
作者
Maghrebi, Mohammad F. [1 ,2 ,3 ]
Gong, Zhe-Xuan [1 ,2 ,4 ]
Gorshkov, Alexey V. [1 ,2 ]
机构
[1] Univ Maryland, NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, NIST, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[3] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[4] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
DIAMOND; SPINS; ENTANGLEMENT; PROPAGATION; SIMULATOR; CHAINS; GASES;
D O I
10.1103/PhysRevLett.119.023001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Continuous symmetry breaking (CSB) in low-dimensional systems, forbidden by the Mermin-Wagner theorem for short-range interactions, may take place in the presence of slowly decaying long-range interactions. Nevertheless, there is no stringent bound on how slowly interactions should decay to give rise to CSB in 1D quantum systems at zero temperature. Here, we study a long-range interacting spin chain with U(1) symmetry and power-law interactions V(r) similar to 1/r(a). Using a number of analytical and numerical techniques, we find CSB for a smaller than a critical exponent alpha(c)(<= 3) that depends on the microscopic parameters of the model. Furthermore, the transition from the gapless XY phase to the gapless CSB phase is mediated by the breaking of conformal and Lorentz symmetries due to long-range interactions, and is described by a universality class akin to, but distinct from, the Berezinskii-Kosterlitz-Thouless transition. Signatures of the CSB phase should be accessible in existing trapped-ion experiments.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Long-range interacting systems in the unconstrained ensemble
    Latella, Ivan
    Perez-Madrid, Agustin
    Campa, Alessandro
    Casetti, Lapo
    Ruffo, Stefano
    PHYSICAL REVIEW E, 2017, 95 (01)
  • [32] Temperature inversion in long-range interacting systems
    Teles, Tarcisio N.
    Gupta, Shamik
    Di Cintio, Pierfrancesco
    Casetti, Lapo
    PHYSICAL REVIEW E, 2015, 92 (02):
  • [33] Long-Range Interacting Systems Are Locally Noninteracting
    Mattes, Robert
    Lesanovsky, Igor
    Carollo, Federico
    PHYSICAL REVIEW LETTERS, 2025, 134 (07)
  • [34] Quantum search in many-body interacting systems with long-range interactions
    Xing, Fan
    Wei, Yan
    Liao, Zeyang
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [35] MATHEMATICAL STRUCTURES FOR LONG-RANGE DYNAMICS AND SYMMETRY-BREAKING
    MORCHIO, G
    STROCCHI, F
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (03) : 622 - 635
  • [36] SYMMETRY-BREAKING AND LONG-RANGE ORDER IN HEISENBERG ANTIFERROMAGNETS
    KOMA, T
    TASAKI, H
    PHYSICAL REVIEW LETTERS, 1993, 70 (01) : 93 - 95
  • [37] The breaking of chiral symmetry using long-range electrostatic forces
    Kohlstedt, Kevin L.
    Vernizzi, Graziano
    Solis, Francisco J.
    de la Cruz, Monica Olvera
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [38] Magnetic response in 1D non-interacting mesoscopic rings: Long-range hopping in shortest path
    Maiti, Santanu K.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (02): : 179 - 190
  • [39] ON THE ABSENCE OF SPIN-FLIP SYMMETRY-BREAKING IN LONG-RANGE RANDOM-SYSTEMS
    SLEGERS, L
    VANSEVENANT, A
    VERBEURE, A
    PHYSICS LETTERS A, 1985, 108 (5-6) : 267 - 268
  • [40] Kaleidoscope of quantum phases in a long-range interacting spin-1 chain
    Gong, Z. -X.
    Maghrebi, M. F.
    Hu, A.
    Foss-Feig, M.
    Richerme, P.
    Monroe, C.
    Gorshkov, A. V.
    PHYSICAL REVIEW B, 2016, 93 (20)