Sparse resultant perturbations

被引:0
|
作者
D'Andrea, C [1 ]
Emiris, IZ [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider linear infinitesimal perturbations on sparse resultants. This yields a family of projection operators, hence a general method for handling algebraic systems in the presence of "excess" components or other degenerate inputs. The complexity is simply exponential in the dimension and polynomial in the sparse resultant degree. Our perturbation generalizes Canny's Generalized Characteristic Polynomial (GCP) for the homogeneous case, while it provides a new and faster algorithm for computing Rojas' toric perturbation. We illustrate our approach through its Maple implementation applied to specific examples. This work generalizes the linear perturbation schemes proposed in computational geometry and is also applied to the problem of rational implicitization with base points.
引用
收藏
页码:93 / 107
页数:15
相关论文
共 50 条
  • [21] Efficient incremental algorithms for the sparse resultant and the mixed volume
    Emiris, IZ
    Canny, JF
    JOURNAL OF SYMBOLIC COMPUTATION, 1995, 20 (02) : 117 - 149
  • [22] RECOVERY OF SPARSE PERTURBATIONS IN LEAST SQUARES PROBLEMS
    Pilanci, Mert
    Arikan, Orhan
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3912 - 3915
  • [23] Sparse PCA: Algorithms, Adversarial Perturbations and Certificates
    D'Orsi, Tommaso
    Kothari, Pravesh K.
    Novikov, Gleb
    Steurer, David
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 553 - 564
  • [24] On the robustness of sparse counterfactual explanations to adverse perturbations
    Virgolin, Marco
    Fracaros, Saverio
    ARTIFICIAL INTELLIGENCE, 2023, 316
  • [25] Sparse resultant of composed polynomials I* mixed-unmixed case
    Hong, H
    Minimair, M
    JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (04) : 447 - 465
  • [26] Sparse resultant of composed polynomials II unmixed-mixed case
    Minimair, M
    JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (04) : 467 - 478
  • [27] A Novel Sparse Compositional Technique Reveals Microbial Perturbations
    Martino, Cameron
    Morton, James T.
    Marotz, Clarisse A.
    Thompson, Luke R.
    Tripathi, Anupriya
    Knight, Rob
    Zengler, Karsten
    MSYSTEMS, 2019, 4 (01)
  • [28] Sparse Resultant-Based Minimal Solvers in Computer Vision and Their Connection with the Action Matrix
    Bhayani, Snehal
    Heikkila, Janne
    Kukelova, Zuzana
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2024, 66 (03) : 335 - 360
  • [29] Sparse Source Localization in Presence of Co-Array Perturbations
    Koochakzadeh, Ali
    Pal, Piya
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 563 - 567
  • [30] Minimum-norm Sparse Perturbations for Opacity in Linear Systems
    John, Varkey M.
    Katewa, Vaibhav
    2023 NINTH INDIAN CONTROL CONFERENCE, ICC, 2023, : 34 - 39