Sparse resultant perturbations

被引:0
|
作者
D'Andrea, C [1 ]
Emiris, IZ [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider linear infinitesimal perturbations on sparse resultants. This yields a family of projection operators, hence a general method for handling algebraic systems in the presence of "excess" components or other degenerate inputs. The complexity is simply exponential in the dimension and polynomial in the sparse resultant degree. Our perturbation generalizes Canny's Generalized Characteristic Polynomial (GCP) for the homogeneous case, while it provides a new and faster algorithm for computing Rojas' toric perturbation. We illustrate our approach through its Maple implementation applied to specific examples. This work generalizes the linear perturbation schemes proposed in computational geometry and is also applied to the problem of rational implicitization with base points.
引用
收藏
页码:93 / 107
页数:15
相关论文
共 50 条
  • [1] Sparse Differential Resultant
    Li, Wei
    Gao, Xiao-Shan
    Yuan, Chun-Ming
    ISSAC 2011: PROCEEDINGS OF THE 36TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2011, : 225 - 232
  • [2] Sparse difference resultant
    Li, Wei
    Yuan, Chun-Ming
    Gao, Xiao-Shan
    JOURNAL OF SYMBOLIC COMPUTATION, 2015, 68 : 169 - 203
  • [3] Sparse difference resultant
    Li, Wei
    Yuan, Chun-Ming
    Gao, Xiao-Shan
    Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, 2013, : 275 - 282
  • [4] A Poisson formula for the sparse resultant
    D'Andrea, Carlos
    Sombra, Martin
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 110 : 932 - 964
  • [5] The height of the mixed sparse resultant
    Sombra, M
    AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (06) : 1253 - 1260
  • [6] Sparse resultant under vanishing coefficients
    Minimair, M
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2003, 18 (01) : 53 - 73
  • [7] The structure of sparse-resultant matrices
    Emiris, IZ
    ADVANCES IN INFORMATICS, 2000, : 97 - 110
  • [8] The Canny–Emiris Conjecture for the Sparse Resultant
    Carlos D’Andrea
    Gabriela Jeronimo
    Martín Sombra
    Foundations of Computational Mathematics, 2023, 23 : 741 - 801
  • [9] Sparse Resultant under Vanishing Coefficients
    Manfred Minimair
    Journal of Algebraic Combinatorics, 2003, 18 : 53 - 73
  • [10] Linear sparse differential resultant formulas
    Rueda, Sonia L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4296 - 4321