Three-body scattering: ladders and resonances

被引:26
|
作者
Mikhasenko, M. [1 ,2 ]
Wunderlich, Y. [1 ]
Jackura, A. [3 ,4 ]
Mathieu, V. [5 ,6 ]
Pilloni, A. [7 ,8 ,9 ]
Ketzer, B. [1 ]
Szczepaniak, A. P. [3 ]
机构
[1] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany
[2] CERN, CH-1211 Geneva 23, Switzerland
[3] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA
[4] Indiana Univ, Phys Dept, Bloomington, IN 47405 USA
[5] Thomas Jefferson Natl Accelerator Facil, Theory Ctr, Newport News, VA 23606 USA
[6] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain
[7] European Ctr Theoret Studies Nucl Phys & Related, Villazzano, Trento, Italy
[8] Fdn Bruno Kessler, Villazzano, Trento, Italy
[9] INFN, Sez Genova, I-16146 Genoa, Italy
基金
美国国家科学基金会;
关键词
Phenomenological Models; QCD Phenomenology; TREIMAN-TYPE EQUATIONS; ISOBAR MODEL; INTEGRAL-EQUATIONS; TRIANGLE GRAPH; UNITARITY; APPROXIMATION; MESON; DECAY; DISCONTINUITIES; FORMALISM;
D O I
10.1007/JHEP08(2019)080
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss unitarity constraints on the dynamics of a system of three interacting particles. We show how the short-range interaction that describes three-body resonances can be separated from the long-range exchange processes, in particular the one-pion-exchange process. It is demonstrated that unitarity demands a specific functional form of the amplitude with a clear interpretation: the bare three-particle resonances are dressed by the initial- and final-state interaction, in a way that is consistent with the considered long-range forces. We postulate that the resonance kernel admits a factorization in the energy variables of the initial- and the final-state particles. The factorization assumption leads to an algebraic form for the unitarity equations, which is reminiscent of the well-known two-body-unitarity condition and approaches it in the limit of the narrow-resonance approximation.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Description of three-body scattering for astrophysics
    Kikuchi, Y.
    Myo, T.
    Takashina, N.
    Kato, K.
    Ikeda, K.
    ORIGIN OF MATTER AND EVOLUTION OF GALAXIES, 2008, 1016 : 445 - +
  • [32] Three-Body Scattering and Hail Size
    Zrnic, D. S.
    Zhang, G.
    Melnikov, V.
    Andric, J.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2010, 49 (04) : 687 - 700
  • [33] Poincare Invariant Three-Body Scattering
    Elster, Ch.
    Lin, T.
    Polyzou, W. N.
    Gloeckle, W.
    FEW-BODY SYSTEMS, 2009, 45 (2-4) : 157 - 160
  • [34] Propagation of singularities in three-body scattering
    Vasy, A
    ASTERISQUE, 2000, (262) : III - +
  • [35] Interplay and escape in three-body scattering
    Shebalin, JV
    Tippens, AL
    ASTRONOMY & ASTROPHYSICS, 1996, 309 (02) : 459 - 464
  • [36] Poincaré Invariant Three-Body Scattering
    Ch. Elster
    T. Lin
    W. N. Polyzou
    W. Glöckle
    Few-Body Systems, 2009, 45 : 157 - 160
  • [37] Coherence of three-body Forster resonances in Rydberg atoms
    Ryabtsev, I. I.
    Beterov, I. I.
    Tretyakov, D. B.
    Yakshina, E. A.
    Entin, V. M.
    Cheinet, P.
    Pillet, P.
    PHYSICAL REVIEW A, 2018, 98 (05)
  • [38] An analytic model of three-body mean motion resonances
    Nesvorny, D
    Morbidelli, A
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1998, 71 (04): : 243 - 271
  • [40] Asteroids in three-body mean motion resonances with planets
    Smirnov, Evgeny A.
    Dovgalev, Ilya S.
    Popova, Elena A.
    ICARUS, 2018, 304 : 24 - 30