Continuum theory of micromorphic electromagnetic thermoelastic solids

被引:73
|
作者
Eringen, AC [1 ]
机构
[1] Princeton Univ, Littleton, CO 80126 USA
关键词
microstructure; electromagnetic;
D O I
10.1016/S0020-7225(02)00274-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A continuum theory is introduced for micromorphic thermoelastic solids subject to electromagnetic interactions. Frame-independent, linear constitutive equations, satisfying thermodynamic restrictions are constructed. Constitutive equations display several new phenomena arising from microstructural interactions. Field equations are given. The theory presented here is important to studying high frequency, short wave-length modes of microstructural solids. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:653 / 665
页数:13
相关论文
共 50 条
  • [41] Micromorphic continuum and fractal fracturing in the lithosphere
    Nagahama, H
    Teisseyre, R
    PURE AND APPLIED GEOPHYSICS, 2000, 157 (04) : 559 - 574
  • [42] Consistent linearization of micromorphic continuum theories
    McAvoy, Ryan C.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2024,
  • [43] Micromorphic Continuum and Fractal Fracturing in the Lithosphere
    H. Nagahama
    R. Teisseyre
    pure and applied geophysics, 2000, 157 : 559 - 574
  • [44] Acceleration waves in the nonlinear micromorphic continuum
    Eremeyev, Victor A.
    Lebedev, Leonid P.
    Cloud, Michael J.
    MECHANICS RESEARCH COMMUNICATIONS, 2018, 93 : 70 - 74
  • [45] A study on hyperelastic models for micromorphic solids
    M. Bazdid-Vahdati
    R. Ansari
    A. Darvizeh
    The European Physical Journal Plus, 138
  • [46] CONTINUUM THEORY OF ELASTIC SOLIDS WITH DIATOMIC STRUCTURE
    DEMIRAY, H
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1973, 11 (12) : 1237 - 1246
  • [47] NONLOCAL CONTINUUM THEORY FOR DIATOMIC ELASTIC SOLIDS
    DEMIRAY, H
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1977, 15 (11) : 623 - 644
  • [48] A theory of continuum damage mechanics for anisotropic solids
    Lee, U
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1999, 66 (01): : 264 - 268
  • [49] On a differential constraint in the continuum theory of growing solids
    Murashkin, E. V.
    Radayev, Yu. N.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2019, 23 (04): : 646 - 656
  • [50] A GENERALIZED CONTINUUM THEORY FOR POROUS ELASTIC SOLIDS
    COODARZ AHMADI
    Science China Mathematics, 1981, (02) : 179 - 188