Big Data-driven for Fuel Quality using NIR Spectrometry Analysis

被引:0
|
作者
Almanjahie, Ibrahim M. [1 ,2 ]
Kaid, Zoulikha [1 ,2 ]
Assiri, Khlood A. [3 ]
Laksaci, Ali [1 ,2 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, Abha 62529, Saudi Arabia
[2] King Khalid Univ, Stat Res & Studies Support Unit, Abha 62529, Saudi Arabia
[3] King Khalid Univ, Coll Sci & Arts, Dept Math, Muhail Asir 63711, Saudi Arabia
来源
CHIANG MAI JOURNAL OF SCIENCE | 2021年 / 48卷 / 04期
关键词
diesel fuel quality; near infrared spectroscopy; cetane number; total aromatics; functional regression; principal component regression; INFRARED-SPECTROSCOPY; PREDICTION; STATISTICS; NUMBER;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new data-driven approach is developed in order to provide a detailed analysis of fuel quality. Our approach is constructed by combining the recent development of applied mathematical statistics to high-resolution mass spectrometry. Precisely, from the modern mathematical statistics, we use new models, recently introduced, to fit a big data sample collected by the Near-Infrared Reflectance (NIR) spectroscopy procedure. Such a method allows to provide exhaustive information about the chemico-physical properties of diesel fuel such as Boiling Point, the Cetane Number, the density, the total aromatics and the viscosity. The big-data models used to conduct this fuel-quality analysis are the classical regression, the local linear regression and the relative regression. We show that the used models improve the accuracy more than the standard models, such as the Principal Component Regression (PCR) or the Partial Least Squares Regression (PLS). Moreover, the main features of the conduct data-driven approach are the possibility to make accurate, non-destructive, fast and interactive tools that allow real-time analysis of the fuel quality. Such fast analysis allows to provide a portable NIR spectrometry that helps to control the diesel fuel quality in both production and transportation which permit us to simplify significantly the cost and the time-testing.
引用
收藏
页码:1161 / 1172
页数:12
相关论文
共 50 条
  • [31] Modeling of Water Quality Parameters Using Data-Driven Models
    Orouji, H.
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, E.
    Marino, M. A.
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2013, 139 (07) : 947 - 957
  • [32] Data-Driven Artificial Intelligence for Calibration of Hyperspectral Big Data
    Sagan, Vasit
    Maimaitijiang, Maitiniyazi
    Paheding, Sidike
    Bhadra, Sourav
    Gosselin, Nichole
    Burnette, Max
    Demieville, Jeffrey
    Hartling, Sean
    LeBauer, David
    Newcomb, Maria
    Pauli, Duke
    Peterson, Kyle T.
    Shakoor, Nadia
    Stylianou, Abby
    Zender, Charles S.
    Mockler, Todd C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] Data-Driven Link Quality Prediction Using Link Features
    Liu, Tao
    Cerpa, Alberto E.
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2014, 10 (02)
  • [34] Holistic data-driven requirements elicitation in the big data era
    Henriksson, Aron
    Zdravkovic, Jelena
    SOFTWARE AND SYSTEMS MODELING, 2022, 21 (04): : 1389 - 1410
  • [35] Holistic data-driven requirements elicitation in the big data era
    Aron Henriksson
    Jelena Zdravkovic
    Software and Systems Modeling, 2022, 21 : 1389 - 1410
  • [36] Big Data Analytics in Education: A Data-Driven Literature Review
    Shabihi, Negar
    Kim, Mi Song
    IEEE 21ST INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES (ICALT 2021), 2021, : 154 - 156
  • [37] A Data-Driven Framework for Business Analytics in the Context of Big Data
    Lu, Jing
    NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS, ADBIS 2018, 2018, 909 : 339 - 351
  • [38] A Data-Driven Sequential Localization Framework for Big Telco Data
    Zhu, Fangzhou
    Yuan, Mingxuan
    Xie, Xike
    Wang, Ting
    Zhao, Shenglin
    Rao, Weixiong
    Zeng, Jia
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (08) : 3007 - 3019
  • [39] A Big Data-Driven Financial Auditing Method Using Convolution Neural Network
    Zhao, Hao
    Wang, Yu
    IEEE ACCESS, 2023, 11 : 41492 - 41502
  • [40] Data mining and visualization of data-driven news in the era of big data
    Qi, Erna
    Yang, Xingrui
    Wang, Zongjun
    Cluster Computing, 2019, 22 : 10333 - 10346