An event bias technique for Monte Carlo device simulation

被引:2
|
作者
Kosina, H [1 ]
Nedjalkov, M [1 ]
Selberherr, S [1 ]
机构
[1] TU Wien, Inst Microelect, A-1040 Vienna, Austria
关键词
Monte Carlo method; event bias technique; variance reduction; device simulation; Boltzmann equation;
D O I
10.1016/S0378-4754(02)00245-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In Monte Carlo (MC) simulations of semiconductor devices it is necessary to enhance the statistics in sparsely populated regions of interest. In this work the Monte Carlo method for stationary carrier transport, known as the Single-Particle MC method, is considered. It gives a solution to the stationary boundary value problem defined by the semi-classical Boltzmann equation (BE). Using a formal approach which employs the integral form of the problem and the Neumann series expansion of the solution, the Single-Particle MC method is derived in a formal way. The independent, identically distributed random variables of the simulated process are identified. Estimates of the stochastic error are given. Furthermore, the extension of the MC estimators to the case of biased events is derived. An event bias technique for particle transport across an energy barrier is developed and simulation results are discussed. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:367 / 375
页数:9
相关论文
共 50 条
  • [31] Bias point selection in the importance sampling Monte Carlo simulation of systems
    Bucklew, JA
    Gubner, JA
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (01) : 152 - 159
  • [32] The exchange bias and coercivity of FM/AFM films: Monte Carlo simulation
    Huang, Zhigao
    Li, Shangdong
    Lin, Haishan
    Zhang, Fengming
    Du, Youwei
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 303 (02) : E180 - E183
  • [33] Modified configurational bias monte carlo method for simulation of polymer systems
    Vendruscolo, M
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (07): : 2970 - 2976
  • [34] Monte Carlo Event Generators
    Gieseke, Stefan
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2012, 222 : 174 - 186
  • [35] METHODOLOGY OF AN EVENT-DRIVEN MONTE-CARLO MISSILE SIMULATION
    HOLLIDAY, MR
    MATHEMATICAL AND COMPUTER MODELLING, 1990, 14 : 1123 - 1128
  • [36] Hedging direct simulation Monte Carlo bets via event splitting
    Oblapenko, G.
    Goldstein, D.
    Varghese, P.
    Moore, C.
    Journal of Computational Physics, 2022, 466
  • [37] Monte Carlo Event Generators
    Dytman, Steven
    12TH INTERNATIONAL WORKSHOP ON NEUTRINO FACTORIES, SUPERBEAMS, AND BETABEAMS (NUFACT), 2011, 1382
  • [38] Hedging direct simulation Monte Carlo bets via event splitting
    Oblapenko, G.
    Goldstein, D.
    Varghese, P.
    Moore, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 466
  • [39] MONTE CARLO EVENT GENERATORS
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D’Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    Chinese Physics C, 2014, (09) : 488 - 497
  • [40] Monte Carlo event generators
    Frixione, S
    DEEP INELASTIC SCATTERING, 2005, 792 : 685 - 688