On metrizable non-Archimedean LF-spaces

被引:0
|
作者
Sliwa, Wieslaw [1 ]
机构
[1] Adam Mickiewicz Univ Poznan, Fac Math & Comp Sci, PL-61614 Poznan, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2009年 / 20卷 / 02期
关键词
Non-Archimedean Frechet space; (LF)-space; Schauder basis; LOCALLY CONVEX-SPACES; SEQUENCES;
D O I
10.1016/S0019-3577(09)80013-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that no non-Archimedcan LB-space (and no strict non-Archimedean LF-space) is metrizable. We show that there exist many metrizable (or even normable) non-Archimedean LF-spaces. We prove that every non-normable polar non-Archimedean Frechet space (and every non-Archimedean Banach space with an infinite basis (x(alpha))) contains a dense subspace which is an LF-space.
引用
收藏
页码:261 / 271
页数:11
相关论文
共 50 条
  • [21] RIESZS LEMMA IN NON-ARCHIMEDEAN SPACES
    BECKENSTEIN, E
    NARICI, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1971, 3 (APR): : 501 - +
  • [22] SPACES OF NON-ARCHIMEDEAN VALUED FUNCTIONS
    KATSARAS, AK
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5B (02): : 603 - 621
  • [23] On quotients of non-archimedean Kothe spaces
    Sliwa, Wieslaw
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (01): : 149 - 157
  • [24] NON-ARCHIMEDEAN K-SPACES
    MARTINEZMAURICA, J
    GARCIA, CP
    HOUSTON JOURNAL OF MATHEMATICS, 1988, 14 (04): : 529 - 534
  • [25] Derived non-archimedean analytic spaces
    Mauro Porta
    Tony Yue Yu
    Selecta Mathematica, 2018, 24 : 609 - 665
  • [26] REFLEXIVE NON-ARCHIMEDEAN BANACH SPACES
    VANDERPU.M
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1970, 73 (04): : 341 - &
  • [27] On quotients of non-Archimedean Frechet spaces
    Sliwa, Wieslaw
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (01) : 147 - 154
  • [28] A NOTE ON STRICT LF-SPACES
    BONET, J
    DIEROLF, S
    ADVANCES IN THE THEORY OF FRECHET SPACES, 1989, 287 : 259 - 264
  • [29] Sequential completeness of LF-spaces
    Kucera, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (01) : 181 - 183
  • [30] DIMENSION OF NON-ARCHIMEDEAN BANACH SPACES
    SHILKRET, N
    COLLOQUIUM MATHEMATICUM, 1973, 28 (01) : 77 - 79