Graphene Oxide: An Effective Promoter for CO2 Hydrate Formation

被引:30
|
作者
Yan, Shuo [1 ,2 ]
Dai, Wenjie [1 ,2 ]
Wang, Shuli [1 ,2 ]
Rao, Yongchao [1 ,2 ]
Zhou, Shidong [1 ,2 ]
机构
[1] Jiangsu Key Lab Oil Gas Storage & Transportat Tec, Changzhou 213016, Peoples R China
[2] Changzhou Univ, Sch Petr Engn, Changzhou 213016, Peoples R China
来源
ENERGIES | 2018年 / 11卷 / 07期
基金
中国国家自然科学基金;
关键词
CO2; hydrate; graphene oxide; microstructure; promoting mechanism; optimum concentration; METHANE HYDRATE; GAS HYDRATE; CARBON-DIOXIDE; ABSORPTION ENHANCEMENT; SILVER NANOPARTICLES; DISSOCIATION; CAPTURE; AL2O3;
D O I
10.3390/en11071756
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The main difficulties in applying technologies based on hydrate formation are the slow hydrate formation rate, low storage capacity, severe formation conditions and environmentally devastating promoters. Nano-sized graphene oxide has special microstructure features such as its functional groups and a large specific surface area, which can lead to high heat and mass transfer efficiency, large gas dissolution, fast nucleation and formation rate. In this work, CO2 hydrate formation with and without graphene oxide nanoparticles was investigated. Herein, the promoting mechanism and effects of graphene oxide concentrations in different initial pressures ranging from 3 to 5 MPa at 279 K on CO2 hydrate formation process were studied experimentally. The experimental results showed that graphene oxide can shorten the induction time by 53-74.3% and increase the gas consumption up to 5.1-15.9% under different system pressures. Based on the results, the optimum concentration was ascertained as 50 ppm under which condition, the induction time and the reaction time were the shortest while the pressure drop and the gas consumption reached the maximum.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Studies of CO2 hydrate formation and dissolution
    North, WJ
    Blackwell, VR
    Morgan, JJ
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (05) : 676 - 681
  • [12] Formation of CO2 hydrate in the presence of montmorillonite
    Yokoyama, C
    Shibuya, K
    Kawase, Y
    Ebina, T
    SEKIYU GAKKAISHI-JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2000, 43 (03): : 182 - 188
  • [13] Kinetic study of hydrate formation in CO2
    Abedi-Farizhendi, Saeid
    Raeisi, Maryam
    Mohammadi, Abolfazl
    Mohammadi, Amir H.
    Manteghian, Mehrdad
    RESULTS IN ENGINEERING, 2024, 21
  • [14] MICROSCOPY OF CO2 HYDRATE FORMATION AND DISSOCIATION
    OHGAKI, K
    MORITOKI, M
    KAGAKU KOGAKU RONBUNSHU, 1994, 20 (02) : 317 - 319
  • [15] KINETICS AND MECHANISM OF THE FORMATION OF CO2 HYDRATE
    SHINDO, Y
    LUND, PC
    FUJIOKA, Y
    KOMIYAMA, H
    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1993, 25 (09) : 777 - 782
  • [16] Synthesis of Cu-Al LDH nanofluid and effectiveness as a promoter for CO2 hydrate formation
    Ansari, Ayaj Ahamad
    Chakraborty, Samarshi
    Ravesh, Randeep
    Panigrahi, Pradipta Kumar
    Das, Malay Kumar
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [17] CO2 HYDRATE FORMATION KINETICS AND MODELLING OF THE AVAILABLE ENTHALPY OF CO2 HYDRATE SLURRY IN TANK REACTOR
    Jerbi, S.
    Delahaye, A.
    Fournaison, L.
    Clain, P.
    Haberschill, P.
    23RD IIR INTERNATIONAL CONGRESS OF REFRIGERATION, 2011, 23 : 2191 - +
  • [18] Kinetics of the formation of CO2 hydrate on the surface of liquid CO2 droplet in water
    Shindo, Y
    Sakaki, K
    Fujioka, Y
    Komiyama, H
    ENERGY CONVERSION AND MANAGEMENT, 1996, 37 (04) : 485 - 489
  • [19] Resolving CO2 and methane hydrate formation kinetics
    Golombok, Michael
    Ineke, Erik
    Luzardo, Juan-Carlos Rojas
    He, Yuan Yuan
    Zitha, Pacelli
    ENVIRONMENTAL CHEMISTRY LETTERS, 2009, 7 (04) : 325 - 330
  • [20] Development of a formation process of CO2 hydrate particles for ocean disposal of CO2
    Takano, S
    Yamasaki, A
    Ogasawara, K
    Kiyono, F
    Fujii, M
    Yanagisawa, Y
    GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS, 2003, : 843 - 848