Two methods for solving the Stokes system in the axisymmetric case are studied. Both are designed for the standard Galerkin formulation, and use discontinuous pressure spaces. The first method is a rectangular based Q(2)-P-1 method due to Fortin. The other one is the so-called Crouzeix-Raviart triangle. Both methods are proven to be second order convergent in the natural weighted Sobolev norms, for the system under consideration.
机构:
Center for Biomedical Computing, Simula Research Laboratory, P.O. Box 134, LysakerCenter for Biomedical Computing, Simula Research Laboratory, P.O. Box 134, Lysaker
Johansson A.
Larson M.G.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics and Mathematical Statistics, Umeå University, UmeåCenter for Biomedical Computing, Simula Research Laboratory, P.O. Box 134, Lysaker
Larson M.G.
Logg A.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, GöteborgCenter for Biomedical Computing, Simula Research Laboratory, P.O. Box 134, Lysaker
机构:
Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, ArgentinaUniv Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
Ausas, Roberto F.
Sousa, Fabricio S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, BrazilUniv Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
Sousa, Fabricio S.
Buscaglia, Gustavo C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, BrazilUniv Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil