A New Bivariate Negative Binomial Regression Model

被引:0
|
作者
Faroughi, Pouya [1 ]
Ismail, Noriszura [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi, Malaysia
关键词
Bivaiiate Poisson regression; Bivariate negative binomial regression; Correlation; COUNT DATA; POISSON-DISTRIBUTION;
D O I
10.1063/1.4903663
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper introduces a new form of bivariate negative binomial (BNB-1) regression which can be fitted to bivariate and correlated count data with covariates. The BNB regression discussed in this study can be fitted to bivariate and overdispersed count data with positive, zero or negative correlations. The joint p.m.f of the BNB1 distribution is derived from the product of two negative binomial marginals with a multiplicative factor parameter. Several testing methods were used to check overdispersion and goodness-of-tit of the model. Application of BNB-1 regression is illustrated on Malaysian motor insurance dataset. The results indicated that BNB-1 regression has better fit than bivariate Poisson and BNB-2 models with regards to Akaike information criterion.
引用
收藏
页码:732 / 736
页数:5
相关论文
共 50 条
  • [41] Geographically Weighted Negative Binomial Regression Model Predicts Wildfire Occurrence in the Great Xing'an Mountains Better Than Negative Binomial Model
    Su, Zhangwen
    Hu, Haiqing
    Tigabu, Mulualem
    Wang, Guangyu
    Zeng, Aicong
    Guo, Futao
    FORESTS, 2019, 10 (05):
  • [42] A bivariate zero-inflated negative binomial model and its applications to biomedical settings
    Cho, Hunyong
    Liu, Chuwen
    Preisser, John S.
    Wu, Di
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (07) : 1300 - 1317
  • [43] The VGAM package for negative binomial regression
    Yee, Thomas W.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2020, 62 (01) : 116 - 131
  • [44] Seemingly unrelated negative binomial regression
    Winkelmann, R
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2000, 62 (04) : 553 - 560
  • [45] NEGATIVE BINOMIAL AND MIXED POISSON REGRESSION
    LAWLESS, JF
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1987, 15 (03): : 209 - 225
  • [46] Semiparametric Negative Binomial Regression Models
    Li, Chin-Shang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (03) : 475 - 486
  • [47] Improved estimation in negative binomial regression
    Kenne Pagui, Euloge Clovis
    Salvan, Alessandra
    Sartori, Nicola
    STATISTICS IN MEDICINE, 2022, 41 (13) : 2403 - 2416
  • [48] Likelihood estimation for a longitudinal negative binomial regression model with missing outcomes
    Bond, Simon J.
    Farewell, Vernon T.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2009, 58 : 369 - 382
  • [49] Negative Binomial Kumaraswamy-G Cure Rate Regression Model
    D'Andrea, Amanda
    Rocha, Ricardo
    Tomazella, Vera
    Louzada, Francisco
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2018, 11 (01)
  • [50] Validating negative binomial lyme disease regression model with bootstrap resampling
    Tran, Phoebe
    Tran, Lam
    ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 82 : 121 - 127