Generalizations and refinements of Hermite-Hadamard's inequality

被引:48
|
作者
Qi, F [1 ]
Wei, ZL
Yang, Q
机构
[1] Henan Polytech Univ, Dept Appl Math & Informat, Res Inst Appl Math, Jiaozuo City 454000, Henan, Peoples R China
[2] Luoyang Normal Coll, Dept Math, Luoyang City 471022, Henan, Peoples R China
[3] N China Inst Water Conservancy & Hydroelect Power, Zhengzhou, Henan, Peoples R China
关键词
harmonic sequence of polynomials; Hermite-Hadamard's inequality; Appell condition; n-convex function; bounded derivative;
D O I
10.1216/rmjm/1181069779
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, with the help of the concept of the harmonic sequence of polynomials, the well known Hermite-Hadamard's inequality for convex functions is generalized to cases with bounded derivatives of nth order, including the so-called n-convex functions, from which Hermite-Hadamard's inequality is extended and refined.
引用
收藏
页码:235 / 251
页数:17
相关论文
共 50 条
  • [41] A Sharp Multidimensional Hermite-Hadamard Inequality
    Larson, Simon
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (02) : 1297 - 1312
  • [42] The converse of the Hermite-Hadamard inequality on simplices
    Mitroi, Flavia-Corina
    Symeonidis, Eleutherius
    EXPOSITIONES MATHEMATICAE, 2012, 30 (04) : 389 - 396
  • [43] EXTENSIONS OF THE HERMITE-HADAMARD INEQUALITY WITH APPLICATIONS
    Bakula, M. Klaricic
    Pecaric, J.
    Peric, J.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 899 - 921
  • [44] HERMITE-HADAMARD INEQUALITY FOR A FRUSTUM OF A SIMPLEX
    Nowicka, Monika
    Witkowski, Alfred
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1319 - 1325
  • [45] Hermite-Hadamard Inequality on Time Scales
    Cristian Dinu
    Journal of Inequalities and Applications, 2008
  • [46] EXTENSIONS AND REFINEMENTS OF FEJER AND HERMITE-HADAMARD TYPE INEQUALITIES
    Abramovich, Shoshana
    Persson, Lars-Erik
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (03): : 759 - 772
  • [47] On extensions and refinements of Hermite-Hadamard inequalities for convex functions
    Wang, LC
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (04): : 659 - 666
  • [48] New refinements of fractional Hermite–Hadamard inequality
    Muhammad Uzair Awan
    Muhammad Aslam Noor
    Ting-Song Du
    Khalida Inayat Noor
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 21 - 29
  • [49] Generalized Hermite-Hadamard's Inequality For Functions Convex On The Coordinates
    Nwaeze, Eze Raymond
    APPLIED MATHEMATICS E-NOTES, 2018, 18 : 275 - 283
  • [50] Matrix inequalities and majorizations around Hermite-Hadamard's inequality
    Bourin, Jean-Christophe
    Lee, Eun-Young
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022,