Out-of-Sample Tuning for Causal Discovery

被引:8
|
作者
Biza, Konstantina [1 ]
Tsamardinos, Ioannis [1 ]
Triantafillou, Sofia [2 ]
机构
[1] Univ Crete, Dept Comp Sci, Iraklion 70013, Greece
[2] Univ Crete, Dept Math & Appl Math, Iraklion 70013, Greece
基金
欧洲研究理事会;
关键词
Tuning; Markov processes; Data models; Stars; Task analysis; Predictive models; Estimation; Causal-based simulation; causal discovery; out-of-sample; tuning; MODEL; NETWORKS; GRAPHS; LATENT;
D O I
10.1109/TNNLS.2022.3185842
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Causal discovery is continually being enriched with new algorithms for learning causal graphical probabilistic models. Each one of them requires a set of hyperparameters, creating a great number of combinations. Given that the true graph is unknown and the learning task is unsupervised, the challenge to a practitioner is how to tune these choices. We propose out-of-sample causal tuning (OCT) that aims to select an optimal combination. The method treats a causal model as a set of predictive models and uses out-of-sample protocols for supervised methods. This approach can handle general settings like latent confounders and nonlinear relationships. The method uses an information-theoretic approach to be able to generalize to mixed data types and a penalty for dense graphs to penalize for complexity. To evaluate OCT, we introduce a causal-based simulation method to create datasets that mimic the properties of real-world problems. We evaluate OCT against two other tuning approaches, based on stability and in-sample fitting. We show that OCT performs well in many experimental settings and it is an effective tuning method for causal discovery.
引用
收藏
页码:4963 / 4973
页数:11
相关论文
共 50 条
  • [11] Testing out-of-sample portfolio performance
    Kazak, Ekaterina
    Pohlmeier, Winfried
    INTERNATIONAL JOURNAL OF FORECASTING, 2019, 35 (02) : 540 - 554
  • [12] Mathematical analysis on out-of-sample extensions
    Wang, Jianzhong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (05)
  • [13] Forecasting in the presence of in-sample and out-of-sample breaks
    Xu, Jiawen
    Perron, Pierre
    EMPIRICAL ECONOMICS, 2023, 64 (06) : 3001 - 3035
  • [14] Out-of-Sample Fusion in Risk Prediction
    Myron Katzoff
    Wen Zhou
    Diba Khan
    Guanhua Lu
    Benjamin Kedem
    Journal of Statistical Theory and Practice, 2014, 8 (3) : 444 - 459
  • [15] Out-of-Sample Embedding by Sparse Representation
    Raducanu, Bogdan
    Dornaika, Fadi
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2012, 7626 : 336 - 344
  • [16] Out-of-sample embedding by sparse representation
    Raducanu, Bogdan
    Dornaika, Fadi
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7626 LNCS : 336 - 344
  • [17] In-Sample and Out-of-Sample Predictability of Cryptocurrency Returns
    Park, Kyungjin
    Lee, Hojin
    EAST ASIAN ECONOMIC REVIEW, 2023, 27 (03) : 213 - 242
  • [18] A note on in-sample and out-of-sample tests for Granger causality
    Chen, SS
    JOURNAL OF FORECASTING, 2005, 24 (06) : 453 - 464
  • [19] A note on the out-of-sample performance of resampled efficiency
    Scherer, Bernd
    JOURNAL OF ASSET MANAGEMENT, 2006, 7 (3-4) : 170 - 178
  • [20] Out-of-Sample Performance of Mutual Fund Predictors
    Jones, Christopher S.
    Mo, Haitao
    REVIEW OF FINANCIAL STUDIES, 2021, 34 (01): : 149 - 193