Aitchison and Rubinstein showed there are two distinct ways to identify the faces of a pair of regular ideal dodecahedra and obtain a knot complement. This paper shows that these knot complements are the only knot complements that decompose into regular ideal dodecahedra, providing a partial solution to a conjecture of Neumann and Reid. A corollary of the main theorem classifies the hyperbolic knot complements can be decomposed into regular ideal polyhedra.
机构:
Uppsala Univ, Dept Math, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden
Inst Mittag Leffler, Auravagen 17, S-18260 Djursholm, SwedenUppsala Univ, Dept Math, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden
Ekholm, Tobias
Gruen, Angus
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USAUppsala Univ, Dept Math, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden
Gruen, Angus
Gukov, Sergei
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USAUppsala Univ, Dept Math, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden
Gukov, Sergei
论文数: 引用数:
h-index:
机构:
Kucharski, Piotr
Park, Sunghyuk
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USAUppsala Univ, Dept Math, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden
Park, Sunghyuk
Stosic, Marko
论文数: 0引用数: 0
h-index: 0
机构:
Inst Super Tecn, Dept Math, CAMGSD, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
Math Inst SANU, Knez Mihajlova 36, Beograd 11000, SerbiaUppsala Univ, Dept Math, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden
Stosic, Marko
Sulkowski, Piotr
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA
Univ Warsaw, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, PolandUppsala Univ, Dept Math, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden