Wiener-type topological indices

被引:0
|
作者
Diudea, MV
Gutman, I
机构
[1] Univ Babes Bolyai, Dept Chem, R-3400 Cluj Napoca, Romania
[2] Univ Kragujevac, Fac Sci, YU-34000 Kragujevac, Yugoslavia
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A unified approach to the Wiener topological index and its various recent modifications, is presented. Among these modifications particular attention is paid to the Kirchhoff, Harary, Szeged, Cluj and Schultz indices, as well as their numerous variants and generalizations. Relations between these indices are established and methods for their computation described. Correlation of these topological indices with physico-chemical properties of molecules, as well as their mutual correlation are examined.
引用
收藏
页码:21 / 51
页数:31
相关论文
共 50 条
  • [21] On Wiener-type polynomials of thorn graphs
    Zhou, Bo
    Vukicevic, Damir
    JOURNAL OF CHEMOMETRICS, 2009, 23 (11-12) : 600 - 604
  • [22] Sharp Bounds and Normalization of Wiener-Type Indices (vol 8, e78448, 2013)
    Tian, D.
    Choi, K. P.
    PLOS ONE, 2014, 9 (04): : e95652
  • [23] Extremal Graphs under Wiener-type Invariants
    Hamzeh, A.
    Hossein-Zadeh, S.
    Ashrafi, A. R.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 69 (01) : 47 - 54
  • [24] Wiener-Type Invariants and Hamiltonian Properties of Graphs
    Zhou, Qiannan
    Wang, Ligong
    Lu, Yong
    FILOMAT, 2019, 33 (13) : 4045 - 4058
  • [25] CLUSTERS AND VARIOUS VERSIONS OF WIENER-TYPE INVARIANTS
    Azari, Mahdieh
    Iranmanesh, Ali
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2015, 39 (02): : 155 - 171
  • [26] Wiener-type Tauberian theorems for Fourier hyperfunctions
    Pilipovic, S
    Stankovic, B
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2002, 21 (04): : 1027 - 1042
  • [27] WIENER-TYPE INVARIANTS OF SOME GRAPH OPERATIONS
    Hossein-Zadeh, S.
    Hamzeh, A.
    Ashrafi, A. R.
    FILOMAT, 2009, 23 (03) : 103 - 113
  • [28] A WIENER-TYPE GRAPH INVARIANT FOR SOME BIPARTITE GRAPHS
    DOBRYNIN, AA
    GUTMAN, I
    DOMOTOR, G
    APPLIED MATHEMATICS LETTERS, 1995, 8 (05) : 57 - 62
  • [29] Identification of Wiener-type nonlinear systems in a noisy environment
    Kalafatis, AD
    Wang, L
    Cluett, WR
    INTERNATIONAL JOURNAL OF CONTROL, 1997, 66 (06) : 923 - 941
  • [30] A Wiener-type neuronal model in the presence of exponential refractoriness
    Albano, Giuseppina
    Giorno, Virginia
    Nobile, Amelia G.
    Ricciardi, Luigi M.
    BIOSYSTEMS, 2007, 88 (03) : 202 - 215