Up-conversion luminescence of crystalline rubrene without any sensitizers

被引:6
|
作者
Liu, Huihui [1 ,2 ]
Yan, Fei [1 ,2 ]
Li, Wenlian [1 ,2 ]
Lee, Chun-Sing [3 ,4 ]
Chu, Bei [1 ,2 ]
Chen, Yiren [1 ,2 ]
Li, Xiao [1 ,2 ]
Han, Liangliang [1 ,2 ]
Su, Zisheng [1 ,2 ]
Zhu, Jianzhuo [1 ,2 ]
Kong, Xianggui [1 ,2 ]
Zhang, Ligong [1 ,2 ]
Luo, Yongshi [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Excited State Proc, Changchun 130033, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
[3] City Univ Hong Kong, COSDAF, Hong Kong, Hong Kong, Peoples R China
[4] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Organic; Up-conversion; Crystallinity; TRIPLET-TRIPLET ANNIHILATION; 2-PHOTON; FLUORESCENCE; ABSORPTION; MORPHOLOGY;
D O I
10.1016/j.orgel.2010.01.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Up-conversion luminescence (UCL) in crystalline rubrene samples in absence of any sensitizers under excitation of 980 nm laser was observed. The optimal quasi-single crystal rubrene sample with the highest crystallinity shows the strongest UCL at 610 nm with up-conversion quantum efficiency of 0.19%. The UCL intensity depends on the proportion of orthorhombic crystal phase, particle size, structural defects, and reabsorption of fluorescence in all samples, while amorphous rubrene sample, such as, both polymethylmethacrylate film dispersed with 0.1 wt.% rubrene and 0.5 x 10 (3) M rubrene chloroform solution, do not exhibit UCL. According to the dependence of the integral UCL intensity on the excitation power density of 980 nm laser, a two-photon absorption feature in our UCL system was obtained. The mechanism of UCL process was also discussed in detail. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:946 / 950
页数:5
相关论文
共 50 条
  • [21] Up-conversion luminescence from neodymium ion implantation silicon
    Xiao, ZS
    Cheng, G
    Zhang, TH
    Xu, F
    SURFACE & COATINGS TECHNOLOGY, 2000, 128 : 461 - 464
  • [22] Heterotrilantanide cluster complexes exhibiting up-conversion luminescence in water
    Karashimada, Ryunosuke
    Musha, Koki
    Iki, Nobuhiko
    CHEMICAL COMMUNICATIONS, 2025,
  • [23] The use of infrared up-conversion for the detection of 1.3 μm luminescence
    Oelckers, S
    Gurzadyan, GG
    Roeder, B
    INFRARED PHYSICS & TECHNOLOGY, 1998, 39 (07) : 425 - 431
  • [24] Enhancement of up-conversion luminescence in Er,Ce doped Y3-xYbxAG single crystalline films
    Zorenko, Yu.
    Gorbenko, V.
    Zorenko, T.
    Paprocki, K.
    Osvet, A.
    Batentschuk, M.
    Brabec, C.
    Fedorov, A.
    JOURNAL OF LUMINESCENCE, 2016, 169 : 816 - 821
  • [25] Effect of the Euclidean dimensionality on the energy transfer up-conversion luminescence
    Mejia, Leopoldo
    Hadad, C. Z.
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2019, 382
  • [26] UP-CONVERSION LUMINESCENCE OF ER AND CR IN YSGG LASER CRYSTALS
    MICHELETTI, R
    MINGUZZI, P
    NOGINOV, MA
    TONELLI, M
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1994, 11 (10) : 2095 - 2099
  • [27] Gain without inversion in the frequency up-conversion regime
    Yelin, SF
    Lukin, MD
    Scully, MO
    Mandel, P
    PHYSICAL REVIEW A, 1998, 57 (05): : 3858 - 3868
  • [28] UP-CONVERSION LASERS WITHOUT POPULATION-INVERSION
    ZHU, YF
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1994, 11 (05) : 943 - 948
  • [29] Luminescence and up-conversion of single crystalline Lu3Al5O12:Pr3+
    Pues, Patrick
    Laube, Michael
    Fischer, Stefan
    Schroeder, Franziska
    Schwung, Sebastian
    Rytz, Daniel
    Fiehler, Torben
    Wittrock, Ulrich
    Juestel, Thomas
    JOURNAL OF LUMINESCENCE, 2021, 234
  • [30] Simple method for simultaneously achieving red and green up-conversion luminescence
    Yin, Xiumei
    Wang, Hong
    Xing, Mingming
    Fu, Yao
    Tian, Ying
    Luo, Xixian
    RSC ADVANCES, 2017, 7 (79) : 50264 - 50268