KERNEL DENSITY ESTIMATION VIA DIFFUSION AND THE COMPLEX EXPONENTIALS APPROXIMATION PROBLEM

被引:1
|
作者
Barone, Piero [1 ]
机构
[1] CNR, Ist Applicazioni Calcolo M Picone, I-00185 Rome, Italy
关键词
Condensed density; random matrices; parabolic PDE; PADE APPROXIMANTS; NOISY; RECONSTRUCTION; TRANSFORM; POLES;
D O I
10.1090/S0033-569X-2014-01333-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A kernel method is proposed to estimate the condensed density of the generalized eigenvalues of pencils of Hankel matrices whose elements have a joint non-central Gaussian distribution with nonidentical covariance. These pencils arise when the complex exponentials approximation problem is considered in Gaussian noise. Several moments problems can be formulated in this framework, and the estimation of the condensed density above is the main critical step for their solution. It is shown that the condensed density satisfies approximately a diffusion equation, which allows us to estimate an optimal bandwidth. It is proved by simulation that good results can be obtained even when the signal-to-noise ratio is so small that other methods fail.
引用
收藏
页码:291 / 310
页数:20
相关论文
共 50 条
  • [41] Reweighted kernel density estimation
    Hazelton, Martin L.
    Turlach, Berwin A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (06) : 3057 - 3069
  • [42] Robust Kernel Density Estimation
    Kim, JooSeuk
    Scott, Clayton D.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 2529 - 2565
  • [43] Complementary Kernel Density Estimation
    Miao, Xu
    Rahimi, Ali
    Rao, Rajesh P. N.
    PATTERN RECOGNITION LETTERS, 2012, 33 (10) : 1381 - 1387
  • [44] Filtered kernel density estimation
    Marchette, David
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2009, 1 (01): : 106 - 109
  • [45] Isolation Kernel Density Estimation
    Ting, Kai Ming
    Washio, Takashi
    Wells, Jonathan R.
    Zhang, Hang
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 619 - 628
  • [46] Adaptive kernel density estimation
    Van Kerm, Philippe
    STATA JOURNAL, 2003, 3 (02): : 148 - 156
  • [47] Variable kernel density estimation
    Hazelton, ML
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (03) : 271 - 284
  • [48] Contingent Kernel Density Estimation
    Fortmann-Roe, Scott
    Starfield, Richard
    Getz, Wayne M.
    PLOS ONE, 2012, 7 (02):
  • [49] Kernel adjusted density estimation
    Srihera, Ramidha
    Stute, Winfried
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (05) : 571 - 579
  • [50] Filtered kernel density estimation
    Marchette, DJ
    Priebe, CE
    Rogers, GW
    Solka, JL
    COMPUTATIONAL STATISTICS, 1996, 11 (02) : 95 - 112