BETA REGRESSION FOR TIME SERIES ANALYSIS OF BOUNDED DATA, WITH APPLICATION TO CANADA GOOGLE® FLU TRENDS

被引:53
|
作者
Guolo, Annamaria [1 ]
Varin, Cristiano [2 ]
机构
[1] Univ Verona, Dept Econ, I-37129 Verona, Italy
[2] Univ Ca Foscari Venezia, Dept Environm Sci Informat & Stat, I-30121 Venice, Italy
来源
ANNALS OF APPLIED STATISTICS | 2014年 / 8卷 / 01期
关键词
Beta regression; bounded time series; Gaussian copula; Google (R) Flu Trends; surveillance;
D O I
10.1214/13-AOAS684
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bounded time series consisting of rates or proportions are often encountered in applications. This manuscript proposes a practical approach to analyze bounded time series, through a beta regression model. The method allows the direct interpretation of the regression parameters on the original response scale, while properly accounting for the heteroskedasticity typical of bounded variables. The serial dependence is modeled by a Gaussian copula, with a correlation matrix corresponding to a stationary autoregressive and moving average process. It is shown that inference, prediction, and control can be carried out straightforwardly, with minor modifications to standard analysis of autoregressive and moving average models. The methodology is motivated by an application to the influenza-like-illness incidence estimated by the Google (R) Flu Trends project.
引用
收藏
页码:74 / 88
页数:15
相关论文
共 50 条
  • [21] Seasonal Trends in Hidradenitis Suppurativa: Data Analysis of the United States and Canada Google Search Patterns
    Nasiri, Nima
    Maazi, Mahan
    Mehta, Shanti
    Mcmullen, Eric P.
    Pourghadiri, Amir
    Croitoru, David
    Piguet, Vincent
    JOURNAL OF CUTANEOUS MEDICINE AND SURGERY, 2024, 28 (04) : 402 - 403
  • [22] Regression Analysis of Time Series vs Cross Section Data
    Gorbachuk, Vasyl
    Gasanov, Aydin
    2012 IV INTERNATIONAL CONFERENCE PROBLEMS OF CYBERNETICS AND INFORMATICS (PCI), 2012,
  • [23] A Model Selection Approach for Time Series Forecasting: Incorporating Google Trends Data in Australian Macro Indicators
    Karim, Ali Abdul
    Pardede, Eric
    Mann, Scott
    ENTROPY, 2023, 25 (08)
  • [24] Graph neural networks for multivariate time series regression with application to seismic data
    Stefan Bloemheuvel
    Jurgen van den Hoogen
    Dario Jozinović
    Alberto Michelini
    Martin Atzmueller
    International Journal of Data Science and Analytics, 2023, 16 : 317 - 332
  • [25] Graph neural networks for multivariate time series regression with application to seismic data
    Bloemheuvel, Stefan
    van den Hoogen, Jurgen
    Jozinovic, Dario
    Michelini, Alberto
    Atzmueller, Martin
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2023, 16 (03) : 317 - 332
  • [26] THE APPLICATION OF TIME-SERIES ANALYSIS TO DATA REVISIONS
    LEFRANCOIS, B
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1988, 16 : 83 - 96
  • [27] Topological Data Analysis and Its Application to Time-Series Data Analysis
    Umeda, Yuhei
    Kaneko, Junji
    Kikuchi, Hideyuki
    FUJITSU SCIENTIFIC & TECHNICAL JOURNAL, 2019, 55 (02): : 65 - 71
  • [28] Topological data analysis and its application to time-series data analysis
    Umeda, Yuhei
    Kaneko, Junji
    Kikuchi, Hideyuki
    Fujitsu Scientific and Technical Journal, 2019, 55 (02): : 65 - 71
  • [29] Forecasting energy data with a time lag into the future and Google trends
    Hassani, Hossein
    Silva, Emmanuel Sirimal
    International Journal of Energy and Statistics, 2016, 4 (04)
  • [30] Multivariate quasi-beta regression models for continuous bounded data
    Petterle, Ricardo R.
    Bonat, Wagner H.
    Scarpin, Cassius T.
    Jonasson, Thaisa
    Borba, Victoria Z. C.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2021, 17 (01): : 39 - 53