Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries

被引:195
|
作者
Zhang, Jialiang [1 ,2 ]
Hu, Juntao [1 ]
Zhang, Wenjuan [1 ]
Chen, Yongqiang [1 ]
Wang, Chengyan [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, Beijing 100083, Peoples R China
[2] Beijing Key Lab Green Recycling & Extract Met, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Recovery; Spent lithium-ion battery; Cathode scrap; Carbonation leaching; Lithium carbonate; VALUABLE METALS; SELECTIVE RECOVERY; KINETICS; DISSOLUTION; SEPARATION; CARBONATE; ACID;
D O I
10.1016/j.jclepro.2018.09.033
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A combined process was presented to recover valuable metals from lithium nickel cobalt manganese (NCM) cathodes of spent lithium-ion batteries. In this process, the cathode scrap was first roasted with carbonaceous reductant, and then carbonation water leaching was employed to selectively extract Li from the roasted cathodes. Finally, the obtained residue was leached in sulfuric acid solution to recover Co, Ni and Mn. A systematic investigation combining thermodynamic analysis, leaching experiments and characterization was conducted to explore the effect of operating conditions and leaching mechanism. The results indicate that the leaching of Li is significantly improved by injecting of CO2 into the leaching system, and more than 80% of Li can be leached within 10 min at a low liquid-solid ratio. High-quality Li2CO3 can be prepared from the leachate by direct evaporation. More than 96% of Ni, Co and Mn are extracted without adding reductant under the conditions of a H2SO4 dosage of 1.15 times the theoretical value, a time of 2.5 h, a temperature of 55 degrees C and a liquid-solid ratio of 3.5 mL g(-1). The acid leaching process is more efficient and economical, which is ascribed to the transformation of the low-valence states of metals with high activity after reduction roasting. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:437 / 446
页数:10
相关论文
共 50 条
  • [21] Recovery of Cobalt, Nickel, and Lithium from Spent Lithium-Ion Batteries with Gluconic Acid Leaching Process: Kinetics Study
    Gerold, Eva
    Lerchbammer, Reinhard
    Antrekowitsch, Helmut
    BATTERIES-BASEL, 2024, 10 (04):
  • [22] MECHANOCHEMICAL EFFICIENT RECOVERY OF COBALT FROM SPENT LITHIUM-ION BATTERIES (LiBs) BY CHLORIDE SOLUTIONS
    Li, X.
    Liu, Q. Z.
    Yu, H. H.
    METALURGIJA, 2024, 63 (3-4): : 413 - 415
  • [23] Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries
    Li, Li
    Ge, Jing
    Chen, Renjie
    Wu, Feng
    Chen, Shi
    Zhang, Xiaoxiao
    WASTE MANAGEMENT, 2010, 30 (12) : 2615 - 2621
  • [24] Selective electrodialysis with bipolar membranes for cobalt and lithium recovery from spent lithium-ion batteries
    Yan, Junying
    Xia, Yuxuan
    Yang, Jie
    Cheng, Liuhuimei
    Liu, Huiqing
    Wang, Baoying
    Li, Ruirui
    Wang, Yaoming
    Xu, Tongwen
    AICHE JOURNAL, 2025,
  • [25] Mechanism of Lithium and Cobalt Recovery from Spent Lithium-ion Batteries by Sulfation Roasting Process
    Yueshan Yu
    Dahui Wang
    Huaijing Chen
    Xiaodong Zhang
    Li Xu
    Lixin Yang
    Chemical Research in Chinese Universities, 2020, 36 : 908 - 914
  • [26] Mechanism of Lithium and Cobalt Recovery from Spent Lithium-ion Batteries by Sulfation Roasting Process
    Yu Yueshan
    Wang Dahui
    Chen Huaijing
    Zhang Xiaodong
    Xu Li
    Yang Lixin
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (05) : 908 - 914
  • [27] Priority recovery of lithium and effective leaching of nickel and cobalt from spent lithium-ion battery
    Cao, Ning
    Zhang, Ya-li
    Chen, Lin-lin
    Jia, Yun
    Huang, Yao-guo
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2022, 32 (05) : 1677 - 1690
  • [28] Recovery of cathode materials and Al from spent lithium-ion batteries by cleaning
    He, Li-Po
    Sun, Shu-Ying
    Song, Xing-Fu
    Yu, Jian-Guo
    WASTE MANAGEMENT, 2015, 46 : 523 - 528
  • [29] Doping strategies for enhancing the performance of lithium nickel manganese cobalt oxide cathode materials in lithium-ion batteries
    Ko, Gyeongbin
    Jeong, Seongdeock
    Park, Sanghyuk
    Lee, Jimin
    Kim, Seoa
    Shin, Youngjun
    Kim, Wooseok
    Kwon, Kyungjung
    ENERGY STORAGE MATERIALS, 2023, 60
  • [30] Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process
    Gao, Wenfang
    Zhang, Xihua
    Zheng, Xiaohong
    Lin, Xiao
    Cao, Hongbin
    Zhi, Yi
    Sun, Zhi
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (03) : 1662 - 1669