Highly Functional Bioinspired Fe/N/C Oxygen Reduction Reaction Catalysts: Structure-Regulating Oxygen Sorption

被引:45
|
作者
Yao, Yingfang [1 ,2 ,3 ]
You, Yong [1 ,2 ]
Zhang, Gaixia [4 ]
Liu, Jianguo [1 ,2 ,5 ]
Sun, Haoran [1 ,2 ]
Zou, Zhigang [1 ,2 ,3 ]
Sun, Shuhui [4 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, 22 Hankou Rd, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, 22 Hankou Rd, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Dept Phys, 22 Hankou Rd, Nanjing 210093, Jiangsu, Peoples R China
[4] Inst Natl Rech Sci Energie Mat & Telecommun, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada
[5] Kunshan Sunlaite New Energy Co Ltd, 1699 South Zuchongzhi Rd, Suzhou 215347, Kunshan, Peoples R China
关键词
proton-exchange membrane fuel cells; oxygen reduction reaction; nonprecious metal catalyst; graphene nanoplatelets; microporosity; HIGH ELECTROCATALYTIC ACTIVITY; METAL-FREE ELECTROCATALYSTS; NITROGEN-DOPED GRAPHENE; IRON; ALLOY; SURFACE; MORPHOLOGY; COMPOSITE; CHEMISTRY; TELEOSTS;
D O I
10.1021/acsami.5b11870
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tuna is one of the most rapid and distant swimmers. Its unique gill structure with the porous lamellae promotes fast oxygen exchange that guarantees tuna's high metabolic and athletic demands. Inspired by this specific structure, we designed and fabricated microporous graphene nanoplatelets (GNPs)-based Fe/N/C electrocatalysts for oxygen reduction reaction (ORR). Careful control of GNP structure leads to the increment of microporosity, which influences the O-2 adsorption positively and desorption oppositely, resulting in enhanced O-2 diffusion, while experiencing reduced ORR kinetics. Working in the cathode of proton-exchange membrane fuel cells, the GNP catalysts require a compromise between adsorption/desorption for effective O-2 exchange, and as a result, appropriate microporosity is needed. In this work, the highest power density, 521 mW.cm(-2), at zero back pressure is achieved.
引用
收藏
页码:6464 / 6471
页数:8
相关论文
共 50 条
  • [21] Unraveling the potential-dependent degradation mechanism in Fe–N–C catalysts for oxygen reduction reaction
    Yuyi Chu
    Yuqing Cheng
    Pengbo Wang
    Jingsen Bai
    Xin Guan
    Shuo Wang
    Chang Lan
    Hongxiang Wu
    Zhaoping Shi
    Siyuan Zhu
    Wei Liu
    Changpeng Liu
    Meiling Xiao
    Wei Xing
    Science China(Chemistry), 2025, 68 (04) : 1541 - 1549
  • [22] Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction
    Liu, Kang
    Fu, Junwei
    Lin, Yiyang
    Luo, Tao
    Ni, Ganghai
    Li, Hongmei
    Lin, Zhang
    Liu, Min
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [23] Biomass wood-derived efficient Fe-N-C catalysts for oxygen reduction reaction
    Li, Dingding
    Han, Zheng
    Leng, Kunyue
    Ma, Shenghua
    Wang, Yi
    Bai, Jinbo
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (22) : 12764 - 12774
  • [24] Potential-Dependent Active Moiety of Fe-N-C Catalysts for the Oxygen Reduction Reaction
    Liu, Kang
    Fu, Junwei
    Luo, Tao
    Ni, Ganghai
    Li, Hongmei
    Zhu, Li
    Wang, Ye
    Lin, Zhang
    Sun, Yifei
    Cortes, Emiliano
    Liu, Min
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (15): : 3749 - 3756
  • [25] What Is the Rate-Limiting Step of Oxygen Reduction Reaction on Fe-N-C Catalysts?
    Yu, Saerom
    Levell, Zachary
    Jiang, Zhou
    Zhao, Xunhua
    Liu, Yuanyue
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (46) : 25352 - 25356
  • [26] Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction
    Jiang, Run
    Qiao, Zelong
    Xu, Haoxiang
    Cao, Dapeng
    CHINESE JOURNAL OF CATALYSIS, 2023, 48 : 224 - 234
  • [27] Laser driven generation of single atom Fe-N-C catalysts for the oxygen reduction reaction
    Madrid, Ainhoa
    Tolosana-Moranchel, Alvaro
    Garcia, Alvaro
    Rojas, Sergio
    Bartolome, Fernando
    Pakrieva, Ekaterina
    Simonelli, Laura
    Martinez, Gema
    Hueso, Jose L.
    Santamaria, Jesus
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [28] Degradation Mechanisms and Durability Improvement Strategies of Fe-N-C Catalysts for Oxygen Reduction Reaction
    Li, Longhao
    Zhou, Wei
    Xie, Liang
    Yang, Chaowei
    Meng, Xiaoxiao
    Gao, Jihui
    PROGRESS IN CHEMISTRY, 2024, 36 (03) : 376 - 392
  • [29] Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction
    Kang Liu
    Junwei Fu
    Yiyang Lin
    Tao Luo
    Ganghai Ni
    Hongmei Li
    Zhang Lin
    Min Liu
    Nature Communications, 13
  • [30] Enhancement of Performance of Fe-N-C Catalysts by Copper and Sulfur Doping for the Oxygen Reduction Reaction
    Wang, Yuemin
    Meng, Qinglei
    Wang, Xian
    Ge, Junjie
    Liu, Changpeng
    Xing, Wei
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (08): : 1843 - 1849