ON EQUIVALENCE OF SUPER LOG SOBOLEV AND NASH TYPE INEQUALITIES

被引:0
|
作者
Biroli, Marco [1 ]
Maheux, Patrick [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Univ Orleans, Federat Denis Poisson, MAPMO, Dept Math,UMR CNRS 7349, F-45067 Orleans 2, France
关键词
ultracontractivity; super log Sobolev inequality; Nash type inequality; Orlicz-Sobolev inequality; semigroups of operators; Dirichlet form; heat kernel; infinite-dimensional torus; HEAT KERNELS; UPPER-BOUNDS; ULTRACONTRACTIVITY; OPERATORS;
D O I
10.4064/cm137-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the equivalence of Nash type and super log Sobolev inequalities for Dirichlet forms. We also show that both inequalities are equivalent to Orlicz Sobolev type inequalities. No ultracontractivity of the semigroup is assumed. It is known that there is no equivalence between super log Sobolev or Nash type inequalities and ultracontractivity. We discuss Davies Simon's counterexample as the borderline case of this equivalence and related open problems.
引用
收藏
页码:189 / 208
页数:20
相关论文
共 50 条
  • [41] MOMENT ESTIMATES IMPLIED BY MODIFIED LOG-SOBOLEV INEQUALITIES
    Adamczak, Radoslaw
    Bednorz, Witold
    Wolff, Pawel
    ESAIM-PROBABILITY AND STATISTICS, 2018, 21 : 467 - 494
  • [42] Strong Logarithmic Sobolev Inequalities for Log-Subharmonic Functions
    Graczyk, Piotr
    Kemp, Todd
    Loeb, Jean-Jacques
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (06): : 1384 - 1410
  • [43] SOBOLEV INEQUALITIES FOR WEIGHT SPACES AND SUPER-CONTRACTIVITY
    ROSEN, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 222 (SEP) : 367 - 376
  • [44] ON INEQUALITIES OF HARDY-SOBOLEV TYPE
    Balinsky, A.
    Evans, W. D.
    Hundertmark, D.
    Lewis, R. T.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02): : 94 - 106
  • [45] SOME REMARKS ON SOBOLEV TYPE INEQUALITIES
    ADIMURTHI
    YADAVA, SL
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (04) : 427 - 442
  • [46] MULTIPLICATIVE SOBOLEV INEQUALITIES OF THE LADYZHENSKAYA TYPE
    Cho, Yong-Kum
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (02): : 335 - 341
  • [47] Fractional sobolev-type inequalities
    Anastassiou, George A.
    APPLICABLE ANALYSIS, 2008, 87 (05) : 607 - 624
  • [48] On Choquet Integrals and Sobolev Type Inequalities
    Petteri Harjulehto
    Ritva Hurri-Syrjänen
    La Matematica, 2024, 3 (4): : 1379 - 1399
  • [49] Sobolev type inequalities on Riemannian manifolds
    Adriano, Levi
    Xia, Changyu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 372 - 383
  • [50] ON SOBOLEV TYPE INTEGRAL-INEQUALITIES
    PACHPATTE, BG
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1986, 103 : 1 - 14