Computing the effective action with the functional renormalization group

被引:39
|
作者
Codello, Alessandro [1 ,2 ]
Percacci, Roberto [3 ,4 ]
Rachwal, Leslaw [5 ]
Tonero, Alberto [6 ,7 ]
机构
[1] Univ Southern Denmark, Origins CP3, Campusvej 55, DK-5230 Odense, Denmark
[2] Univ Southern Denmark, Danish IAS, Campusvej 55, DK-5230 Odense, Denmark
[3] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[4] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
[5] Fudan Univ, Dept Phys, Ctr Field Theory & Particle Phys, Shanghai 200433, Peoples R China
[6] ICTP SAIFR, Rua Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, Brazil
[7] IFT, Rua Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, Brazil
来源
EUROPEAN PHYSICAL JOURNAL C | 2016年 / 76卷 / 04期
基金
巴西圣保罗研究基金会; 新加坡国家研究基金会;
关键词
BACKGROUND FIELD METHOD; LOOP EFFECTIVE ACTION; INFRARED BEHAVIOR; PERTURBATION-THEORY;
D O I
10.1140/epjc/s10052-016-4063-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The "exact" or "functional" renormalization group equation describes the renormalization group flow of the effective average action Gamma(k). The ordinary effective action Gamma(0) can be obtained by integrating the flow equation from an ultraviolet scale k = Lambda downto k = 0. We give several examples of such calculations at one-loop, both in renormalizable and in effective field theories. We reproduce the four-point scattering amplitude in the case of a real scalar field theory with quartic potential and in the case of the pion chiral Lagrangian. In the case of gauge theories, we reproduce the vacuum polarization of QED and of Yang-Mills theory. We also compute the two-point functions for scalars and gravitons in the effective field theory of scalar fields minimally coupled to gravity.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Computing the effective action with the functional renormalization group
    Alessandro Codello
    Roberto Percacci
    Lesław Rachwał
    Alberto Tonero
    The European Physical Journal C, 2016, 76
  • [2] Effective action from the functional renormalization group
    Nobuyoshi Ohta
    Lesław Rachwał
    The European Physical Journal C, 2020, 80
  • [3] Effective action from the functional renormalization group
    Ohta, Nobuyoshi
    Rachwal, Leslaw
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (09):
  • [4] Functional renormalization group flow of the effective Hamiltonian action
    Vacca, G. P.
    Zambelli, L.
    PHYSICAL REVIEW D, 2012, 86 (08):
  • [5] Renormalization of the 4PI effective action using the functional renormalization group
    Carrington, M. E.
    Friesen, S. A.
    Phillips, C. D.
    Pickering, D.
    PHYSICAL REVIEW D, 2019, 99 (07)
  • [6] Effective Action with Composite Fields in the Functional Renormalization Group Approach
    Zyryanova, O., V
    Mudruk, V., I
    RUSSIAN PHYSICS JOURNAL, 2021, 63 (12) : 2117 - 2121
  • [7] Effective Action with Composite Fields in the Functional Renormalization Group Approach
    O. V. Zyryanova
    V. I. Mudruk
    Russian Physics Journal, 2021, 63 : 2117 - 2121
  • [8] Polyakov effective action from functional renormalization group equation
    Codello, Alessandro
    ANNALS OF PHYSICS, 2010, 325 (08) : 1727 - 1738
  • [9] The renormalization group and the effective action
    McKeon, D. G. C.
    CANADIAN JOURNAL OF PHYSICS, 2011, 89 (03) : 277 - 280
  • [10] Loop expansion of the average effective action in the functional renormalization group approach
    Lavrov, Peter M.
    Merzlikin, Boris S.
    PHYSICAL REVIEW D, 2015, 92 (08):