GWAMA: software for genome-wide association meta-analysis

被引:414
|
作者
Magi, Reedik [1 ,2 ]
Morris, Andrew P. [1 ]
机构
[1] Univ Oxford, Wellcome Trust Ctr Human Genet, Genet & Genom Epidemiol Unit, Oxford OX3 7BN, England
[2] Univ Oxford, Churchill Hosp, Oxford Ctr Diabet Endocrinol & Metab, Oxford OX3 7LJ, England
来源
BMC BIOINFORMATICS | 2010年 / 11卷
基金
英国惠康基金;
关键词
HETEROGENEITY; IMPUTATION;
D O I
10.1186/1471-2105-11-288
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. Results: We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. Conclusions: The GWAMA (Genome-Wide Association Meta-Analysis) software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Coronary ARtery DIsease Genome-wide Replication And Meta-Analysis (CARDIoGRAM) - Design of a prospective meta-analysis of 14 genome-wide association studies
    Koenig, Inke R.
    Thompson, John R.
    Preuss, Michael
    Assimes, Themistocles L.
    Blankenberg, Stefan
    Boerwinkle, Eric
    Cupples, Adrienne
    Epstein, Stephen
    Hall, Alistair
    Hengstenberg, Christian
    Kathiresan, Sekar
    Laaksonen, Reijo
    Maerz, Winfried
    McPherson, Ruth
    O'Donnell, Christopher J.
    Quertermous, Thomas
    Rader, Daniel
    Reilly, Mureclach
    Roberts, Robert
    Stewart, Alex
    Thorsteinsdottir, Unnur
    Ziegler, Andreas
    Erdmann, Jeanette
    Samani, Nilesh J.
    Schunkert, Heribert
    GENETIC EPIDEMIOLOGY, 2009, 33 (08) : 784 - 785
  • [32] CORONARY ARTERY DISEASE GENOME-WIDE REPLICATION AND META-ANALYSIS (CARDIOGRAM) - DESIGN OF A PROSPECTIVE META-ANALYSIS OF 14 GENOME-WIDE ASSOCIATION STUDIES
    Erdmann, J.
    ATHEROSCLEROSIS SUPPLEMENTS, 2010, 11 (02) : 38 - 38
  • [33] GENOME-WIDE META-ANALYSIS OF DEPRESSION
    Howard, David
    Adams, Mark J.
    Clarke, Toni-Kim
    Hafferty, Jonathan D.
    Gibson, Jude
    Coleman, Jonathan R. I.
    Deary, Ian J.
    Smith, Daniel J.
    Sullivan, Patrick F.
    Wray, Naomi R.
    Breen, Gerome
    Lewis, Cathryn M.
    McIntosh, Andrew M.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : 1067 - 1067
  • [34] Meta-Analysis of Two Genome-Wide Association Studies of Bovine Paratuberculosis
    Minozzi, Giulietta
    Williams, John L.
    Stella, Alessandra
    Strozzi, Francesco
    Luini, Mario
    Settles, Matthew L.
    Taylor, Jeremy F.
    Whitlock, Robert H.
    Zanella, Ricardo
    Neibergs, Holly L.
    PLOS ONE, 2012, 7 (03):
  • [35] Meta-Analysis of Sex-Specific Genome-Wide Association Studies
    Magi, Reedik
    Lindgren, Cecilia M.
    Morris, Andrew P.
    GENETIC EPIDEMIOLOGY, 2010, 34 (08) : 846 - 853
  • [36] Meta-Analysis of Genome-Wide and Replication Association Studies on Prostate Cancer
    Liu, Hong
    Wang, Bo
    Han, Chunsheng
    PROSTATE, 2011, 71 (02): : 209 - 224
  • [37] Meta-analysis on genome-wide association studies on heart rate variability
    de Geus, Eco J.
    PSYCHOSOMATIC MEDICINE, 2017, 79 (04): : A155 - A156
  • [38] Genome-Wide Association Meta-Analysis for Acute Rejection of Kidney Transplants
    Israni, Ajay K.
    Jacobson, Pamala A.
    Guan, Weihua
    Dorr, Casey R.
    van Setten, Jessica
    de Borst, Martin H.
    Stapleton, Caragh P.
    Phelan, Paul J.
    Conlon, Peter J.
    Birdwell, Kelly A.
    Reindl-Schwaighofer, Roman
    Heinzel, Andreas
    Bakker, Stephan J.
    Cavelleri, Gianpiero
    Oetting, William S.
    Schladt, David P.
    Kwok, Pui-Yan
    Eikmans, Michael
    Snieder, Harold
    Wu, Baolin
    Bassaganyas, Laia
    Yang, Jianxin
    van der Most, Peter J.
    Asselbergs, Folkert W.
    Keating, Brendan
    TRANSPLANTATION, 2018, 102 : S27 - S28
  • [39] Meta-Analysis of Multiple Regression Models in Genome-Wide Association Studies
    Vaitsiakhovich, T.
    Becker, T.
    HUMAN HEREDITY, 2015, 79 (01) : 47 - 47
  • [40] A meta-analysis of genome-wide association studies of asthma in Puerto Ricans
    Yan, Qi
    Brehm, John
    Pino-Yanes, Maria
    Forno, Erick
    Lin, Jerome
    Oh, Sam S.
    Acosta-Perez, Edna
    Laurie, Cathy C.
    Cloutier, Michelle M.
    Raby, Benjamin A.
    Stilp, Adrienne M.
    Sofer, Tamar
    Hu, Donglei
    Huntsman, Scott
    Eng, Celeste S.
    Conomos, Matthew P.
    Rastogi, Deepa
    Rice, Kenneth
    Canino, Glorisa
    Chen, Wei
    Barr, R. Graham
    Burchard, Esteban G.
    Celedon, Juan C.
    EUROPEAN RESPIRATORY JOURNAL, 2017, 49 (05)