GWAMA: software for genome-wide association meta-analysis

被引:414
|
作者
Magi, Reedik [1 ,2 ]
Morris, Andrew P. [1 ]
机构
[1] Univ Oxford, Wellcome Trust Ctr Human Genet, Genet & Genom Epidemiol Unit, Oxford OX3 7BN, England
[2] Univ Oxford, Churchill Hosp, Oxford Ctr Diabet Endocrinol & Metab, Oxford OX3 7LJ, England
来源
BMC BIOINFORMATICS | 2010年 / 11卷
基金
英国惠康基金;
关键词
HETEROGENEITY; IMPUTATION;
D O I
10.1186/1471-2105-11-288
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. Results: We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. Conclusions: The GWAMA (Genome-Wide Association Meta-Analysis) software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] GWAMA: software for genome-wide association meta-analysis
    Reedik Mägi
    Andrew P Morris
    BMC Bioinformatics, 11
  • [2] GWAMA: Software Tool for Meta-analysis and Visualization of Whole Genome Association Data
    Magi, Reedik
    Morris, Andrew P.
    GENETIC EPIDEMIOLOGY, 2009, 33 (08) : 784 - 784
  • [3] The meta-analysis of genome-wide association studies
    Thompson, John R.
    Attia, John
    Minelli, Cosetta
    BRIEFINGS IN BIOINFORMATICS, 2011, 12 (03) : 259 - 269
  • [4] GENOME-WIDE ASSOCIATION META-ANALYSIS OF GASTROPARESIS
    Tavares, Leticia C.
    Zheng, Tenghao
    Mitchell, Emily P.
    Kwicklis, Madeline
    Pandit, Anita
    Bernard, Cheryl
    Teder-Laving, Maris
    Marques, Francine
    Esko, Tonu
    Zawistowski, Matthew
    Kuo, Braden
    Shulman, Robert J.
    Chumpitazi, Bruno P.
    Koch, Kenneth L.
    Sarosiek, Irene
    Abell, Thomas
    McCallum, Richard W.
    Parkman, Henry P.
    Pasricha, Pankaj J.
    Hamilton, Frank A.
    Tonascia, James
    Farrugia, Gianrico
    Grover, Madhusudan
    D'Amato, Mauro
    GASTROENTEROLOGY, 2022, 162 (07) : S156 - S157
  • [5] Meta-analysis in genome-wide association studies
    Zeggini, E.
    Ioannidis, J. P. A.
    PHARMACOGENOMICS, 2009, 10 (02) : 191 - 201
  • [6] GWAMA: software tool for meta analysis of whole genome association data
    Maegi, Reedik
    Morris, Andrew P.
    ANNALS OF HUMAN GENETICS, 2009, 73 : 668 - 668
  • [7] Genome-wide association study of glioma and meta-analysis
    Rajaraman, Preetha
    Melin, Beatrice S.
    Wang, Zhaoming
    McKean-Cowdin, Roberta
    Michaud, Dominique S.
    Wang, Sophia S.
    Bondy, Melissa
    Houlston, Richard
    Jenkins, Robert B.
    Wrensch, Margaret
    Yeager, Meredith
    Ahlbom, Anders
    Albanes, Demetrius
    Andersson, Ulrika
    Freeman, Laura E. Beane
    Buring, Julie E.
    Butler, Mary Ann
    Braganza, Melissa
    Carreon, Tania
    Feychting, Maria
    Fleming, Sarah J.
    Gapstur, Susan M.
    Gaziano, J. Michael
    Giles, Graham G.
    Hallmans, Goran
    Henriksson, Roger
    Hoffman-Bolton, Judith
    Inskip, Peter D.
    Johansen, Christoffer
    Kitahara, Cari M.
    Lathrop, Mark
    Liu, Chenwei
    Le Marchand, Loic
    Linet, Martha S.
    Lonn, Stefan
    Peters, Ulrike
    Purdue, Mark P.
    Rothman, Nathaniel
    Ruder, Avima M.
    Sanson, Marc
    Sesso, Howard D.
    Severi, Gianluca
    Shu, Xiao-Ou
    Simon, Matthias
    Stampfer, Meir
    Stevens, Victoria L.
    Visvanathan, Kala
    White, Emily
    Wolk, Alicja
    Zeleniuch-Jacquotte, Anne
    HUMAN GENETICS, 2012, 131 (12) : 1877 - 1888
  • [8] On individual genome-wide association studies and their meta-analysis
    Pei, Yu-Fang
    Zhang, Lei
    Papasian, Christopher J.
    Wang, Yu-Ping
    Deng, Hong-Wen
    HUMAN GENETICS, 2014, 133 (03) : 265 - 279
  • [9] Genome-wide association study of glioma and meta-analysis
    Preetha Rajaraman
    Beatrice S. Melin
    Zhaoming Wang
    Roberta McKean-Cowdin
    Dominique S. Michaud
    Sophia S. Wang
    Melissa Bondy
    Richard Houlston
    Robert B. Jenkins
    Margaret Wrensch
    Meredith Yeager
    Anders Ahlbom
    Demetrius Albanes
    Ulrika Andersson
    Laura E. Beane Freeman
    Julie E. Buring
    Mary Ann Butler
    Melissa Braganza
    Tania Carreon
    Maria Feychting
    Sarah J. Fleming
    Susan M. Gapstur
    J. Michael Gaziano
    Graham G. Giles
    Goran Hallmans
    Roger Henriksson
    Judith Hoffman-Bolton
    Peter D. Inskip
    Christoffer Johansen
    Cari M. Kitahara
    Mark Lathrop
    Chenwei Liu
    Loic Le Marchand
    Martha S. Linet
    Stefan Lonn
    Ulrike Peters
    Mark P. Purdue
    Nathaniel Rothman
    Avima M. Ruder
    Marc Sanson
    Howard D. Sesso
    Gianluca Severi
    Xiao-Ou Shu
    Matthias Simon
    Meir Stampfer
    Victoria L. Stevens
    Kala Visvanathan
    Emily White
    Alicja Wolk
    Anne Zeleniuch-Jacquotte
    Human Genetics, 2012, 131 : 1877 - 1888
  • [10] On individual genome-wide association studies and their meta-analysis
    Yu-Fang Pei
    Lei Zhang
    Christopher J. Papasian
    Yu-Ping Wang
    Hong-Wen Deng
    Human Genetics, 2014, 133 : 265 - 279