Radial Basis Function for Visual Image Retrieval

被引:0
|
作者
Flores-Pulido, Leticia [1 ,3 ]
Rodriguez-Gomez, Gustavo [2 ]
Starostenko, Oleg [1 ]
Santacruz-Olmos, Carlos [3 ]
机构
[1] Univ Americas Puebla, Dept Comp Elect & Mechatron, Sta Catarina Mrtir, Cholula 72820, Mexico
[2] Inst Nacl Astrofis Opt & Electr, Comp Sci Coordinat, Puebla 72000, Mexico
[3] Univ Autonoma Tlaxcala, Engn & Technol Fac, Apizaco Tlax 90300, Mexico
关键词
SUBSPACE ARRANGEMENTS;
D O I
10.1109/CERMA.2010.51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual image retrieval systems imply novel approaches to improve their performance. Search methods require mathematical formalism for feature extraction of multimedial data. Euclidean distance is not enough approach for extracting similarity between images. Radial basis function provides necessary optimization for similarity measures when query image is used as reference. This paper explains a novel method exploiting radial basis function applied for visual image retrieval area. The goal of the approach is the searching process optimization for image retrieval which is obtained results reveal interesting conclusions about advantages of the proposed method even conventional similarity measurement approaches used in content based retrieval area.
引用
收藏
页码:383 / 387
页数:5
相关论文
共 50 条
  • [31] DETECTABILITY OF DEGRADED VISUAL SIGNALS - BASIS FOR EVALUATING IMAGE-RETRIEVAL PROGRAMS
    WHEELER, L
    SWINDELL, W
    DANIEL, T
    SEELEY, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1971, 61 (05) : 689 - &
  • [32] Nonlinear Image Restoration Using Recurrent Radial Basis Function Network
    Zhao, Shengkui
    Cai, Jianfei
    Man, Zhihong
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 1161 - 1164
  • [33] FISH image analysis using a modified radial basis function network
    Sagonas, Christos
    Marras, Ioannis
    Kasampalidis, Ioannis
    Pitas, Ioannis
    Lyroudia, Kleoniki
    Karayannopoulou, Georgia
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2013, 8 (01) : 30 - 40
  • [34] Meshfree local radial basis function collocation method with image nodes
    Seung Ki Baek
    Minjae Kim
    Journal of the Korean Physical Society, 2017, 71 : 1 - 7
  • [35] Image interpolation for progressive transmission by using radial basis function networks
    Sigitani, T
    Iiguni, Y
    Maeda, H
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (02): : 381 - 390
  • [36] Drone Image Stitching Based on Compactly Supported Radial Basis Function
    Chen, Jun
    Wan, Qi
    Luo, Linbo
    Wang, Yong
    Luo, Dapeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (11) : 4634 - 4643
  • [37] Application of Radial Basis Function Interpolation for Content Aware Image Retargeting
    Abebe, Mekides Assefa
    Hardeberg, Jon Yngve
    2018 14TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS), 2018, : 174 - 183
  • [38] Radial basis function method
    Proceedings of the Summer School in Numerical Analysis, 1992, 2
  • [39] Performance Evaluation of PET Image Reconstruction Using Radial Basis Function Networks
    Arunprasath, T.
    Rajasekaran, M. Pallikonda
    Kannan, S.
    George, Shaeba Mariam
    ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY ALGORITHMS IN ENGINEERING SYSTEMS, VOL 1, 2015, 324 : 481 - 489
  • [40] Radial basis function network for traffic scene classification in single image mode
    Huang, Qiao
    Hu, Jianming
    Song, Jingyan
    Gao, Tianliang
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 3, PROCEEDINGS, 2006, 3973 : 23 - 32