ON THE ORDER OF ODD INTEGERS MODULO 2n

被引:0
|
作者
Jung, Soon-Mo [1 ]
Nam, Doyun [2 ]
Rassias, Michael Th [3 ,4 ,5 ]
机构
[1] Hongik Univ, Math Sect, Coll Sci & Technol, Sejong 30016, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[3] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[4] Moscow Inst Phys & Technol, Inst Skiy,D 9, Dolgoprudnyi 141700, Russia
[5] Inst Adv Study, Program Interdisciplinary Studies, 1 Einstein Dr, Princeton, NJ 08540 USA
基金
新加坡国家研究基金会;
关键词
Order of odd integers; primitive root; Euler totient function;
D O I
10.2298/AADM190326023J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the order of odd integers of the forms 2(j)u + 1 and 2(j)u + 3 modulo 2(n), where j is an integer with j >= 2, u is an odd positive integer, and n is an integer with n >= j + 3.
引用
收藏
页码:619 / 631
页数:13
相关论文
共 50 条
  • [41] Counting Integers Representable as Images of Polynomials Modulo n
    Arias, Fabian
    Borja, Jerson
    Rubio, Luis
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (06)
  • [42] Prime and irreducible elements of the ring of integers modulo n
    Jafari, M.
    Madadi, A.
    MATHEMATICAL GAZETTE, 2012, 96 (536): : 283 - 287
  • [43] IMPRIMITIVE REGULAR ACTION IN THE RING OF INTEGERS MODULO n
    Han, Juncheol
    Lee, Yang
    Park, Sangwon
    CONTEMPORARY RING THEORY 2011, 2012, : 182 - 195
  • [44] A quantum algorithm for computing multiplicative order of integers modulo a prime
    Valluri, Maheswara Rao
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02): : 573 - 584
  • [45] The Polychromatic Number of Small Subsets of the Integers Modulo n
    Curl, Emelie
    Goldwasser, John
    Sampson, Joe
    Young, Michael
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [46] The Polychromatic Number of Small Subsets of the Integers Modulo n
    Emelie Curl
    John Goldwasser
    Joe Sampson
    Michael Young
    Graphs and Combinatorics, 2022, 38
  • [47] GROUPS OF ORDER 2N(N[=6)
    不详
    MATHEMATICS OF COMPUTATION, 1965, 19 (90) : 335 - &
  • [48] GROUPS OF ORDER 2N(N[-6)
    TODD, OT
    AMERICAN SCIENTIST, 1965, 53 (02) : A230 - &
  • [49] New weighing matrices of order 2n and weight 2n - 5
    Kotsireas, Ilias S.
    Koukouvinos, Christos
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2009, 70 : 197 - 205
  • [50] On the distinctness of modular reductions of primitive sequences modulo square-free odd integers
    Zheng, Qunxiong
    Qi, Wenfeng
    Tian, Tian
    INFORMATION PROCESSING LETTERS, 2012, 112 (22) : 872 - 875