Space-time L2 estimates, regularity and almost global existence for elastic waves

被引:9
|
作者
Hidano, Kunio [1 ]
Zha, Dongbing [2 ]
机构
[1] Mie Univ, Dept Math, Fac Educ, 1577 Kurima Machiya Cho, Tsu, Mie 5148507, Japan
[2] Donghua Univ, Dept Appl Math, Shanghai 201620, Peoples R China
关键词
Elastic waves; Keel-Smith-Sogge-type estimates; regularity; almost global existence; LOCAL WELL-POSEDNESS; LIFE-SPAN; EQUATIONS; COUNTEREXAMPLES; EXTERIOR;
D O I
10.1515/forum-2018-0050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first establish a kind of weighted space-time L-2 estimate, which belongs to Keel Smith Sogge-type estimates, for perturbed linear elastic wave equations. This estimate refines the corresponding one established by the second author [D. Zha, Space-time L-2 estimates for elastic waves and applications, 1. Differential Equations 263 (2017), no. 4, 1947-1965] and is proved by combining the methods in the former paper, the first author, Wang and Yokoyama's paper [K. Hidano, C. Wang and K. Yokoyama, On almost global existence and local well posedness for some 3-D quasi-linear wave equations, Adv. Differential Equations 17 (2012), no. 3-4, 267-306] and some new ingredients. Then, together with some weighted Sobolev inequalities, this estimate is used to show a refined version of almost global existence of classical solutions for nonlinear elastic waves with small initial data. Compared with former almost global existence results for nonlinear elastic waves due to John [F. John, Almost global existence of elastic waves of finite amplitude arising from small initial disturbances, Comm. Pure Appl. Math. 41 (1988), no. 5, 615 666] and Klainerman and Sideris [S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math. 49 (1996), 307-321], the main innovation of our result is that it considerably improves the amount of regularity of initial data, i.e., the Sobolev regularity of initial data is assumed to be the smallest among all the admissible Sobolev spaces of integer order in the standard local existence theory. Finally, in the radially symmetric case, we establish the almost global existence of a low regularity solution for every small initial data in H-3 x H-2.
引用
收藏
页码:1291 / 1307
页数:17
相关论文
共 50 条