SOLUBLE SUBGROUPS OF ODD INDEX IN ALTERNATING GROUPS

被引:4
|
作者
Revin, D. O. [1 ]
机构
[1] Novosibirsk State Univ, Sobolev Inst Math, Novosibirsk, Russia
基金
俄罗斯科学基金会;
关键词
complete class of finite groups; subgroup of odd index; alternating group; symmetric group; soluble group; maximal soluble group; submaximal soluble group;
D O I
10.1134/S0037446621020105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a class of finite groups containing a group of even order and closed under subgroups, homomorphic images, and extensions. Then each finite group possesses a maximal X-subgroup of odd index and the study of the subgroups can be reduced to the study of the so-called submaximal X-subgroups of odd index in simple groups. We prove a theorem that deduces the description of submaximal X-subgroups of odd index in an alternating group from the description of maximal X-subgroups of odd index in the corresponding symmetric group. In consequence, we classify the submaximal soluble subgroups of odd index in alternating groups up to conjugacy.
引用
收藏
页码:313 / 323
页数:11
相关论文
共 50 条