Geoacoustic Inversion for Bottom Parameters via Bayesian Theory in Deep Ocean

被引:3
|
作者
Guo, Xiao-Le [1 ,2 ]
Yang, Kun-De [1 ,2 ]
Ma, Yuan-Liang [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Minist Ind & Informat Technol, Key Lab Ocean Acoust & Sensing, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
GIBBS SAMPLER; UNCERTAINTY;
D O I
10.1088/0256-307X/34/3/034301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a new approach to estimating bottom parameters based on the Bayesian theory in deep ocean. The solution in a Bayesian inversion is characterized by its posterior probability density (PPD), which combines prior information about the model with information from an observed data set. Bottom parameters are sensitive to the transmission loss (TL) data in shadow zones of deep ocean. In this study, TLs of different frequencies from the South China Sea in the summer of 2014 are used as the observed data sets. The interpretation of the multidimensional PPD requires the calculation of its moments, such as the mean, covariance, and marginal distributions, which provide parameter estimates and uncertainties. Considering that the sensitivities of shallowzone TLs vary for different frequencies of the bottom parameters in the deep ocean, this research obtains bottom parameters at varying frequencies. Then, the inversion results are compared with the sampling data and the correlations between bottom parameters are determined. Furthermore, we show the inversion results for multi-frequency combined inversion. The inversion results are verified by the experimental TLs and the numerical results, which are calculated using the inverted bottom parameters for different source depths and receiver depths at the corresponding frequency.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Geoacoustic inversion for bottom parameters in a thermocline environment in the northern area of the South China Sea
    LI Mengzhu
    LI Zhenglin
    Li Qianqian
    Chinese Journal of Acoustics, 2020, 39 (01) : 39 - 52
  • [22] Geoacoustic inversion for bottom parameters in a thermocline environment in the northern area of the South China Sea
    Li, Mengzhu
    Li, Zhenglin
    Li, Qianqian
    Shengxue Xuebao/Acta Acustica, 2019, 44 (03): : 321 - 328
  • [23] Bayesian Geoacoustic Inversion With the Image Source Method
    Guillon, Laurent
    Dosso, Stan E.
    Chapman, N. Ross
    Drira, Achraf
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2016, 41 (04) : 1035 - 1044
  • [24] Bayesian matched-field geoacoustic inversion
    Dosso, Stan E.
    Dettmer, Jan
    INVERSE PROBLEMS, 2011, 27 (05)
  • [25] Inversion of shallow seabed structure and geoacoustic parameters with ship radiated noise Bayesian method
    Zhu, Hanhao
    Xue, Yangyang
    Cui, Zhiqiang
    Wang, Qile
    Shengxue Xuebao/Acta Acustica, 2022, 47 (06): : 765 - 776
  • [26] A Bayesian method of seabed structure and geoacoustic parameters inversion using ship radiated noise
    ZHU Hanhao
    XUE Yangyang
    CUI Zhiqiang
    WANG Qile
    ChineseJournalofAcoustics, 2023, 42 (02) : 119 - 138
  • [27] A geoacoustic inversion method based on bottom reflection signals
    Yang Kun-De
    Ma Yuan-Liang
    ACTA PHYSICA SINICA, 2009, 58 (03) : 1798 - 1805
  • [28] A GEOACOUSTIC MODEL OF SOUND SCATTERING BY THE OCEAN BOTTOM BASED ON DEEP-SEA DRILLING DATA
    EFIMOV, AV
    IVAKIN, AN
    LYSANOV, YP
    OKEANOLOGIYA, 1988, 28 (03): : 371 - 375
  • [29] Bayesian geoacoustic inversion in a dynamic shallow water environment
    Jiang, Yong-Min
    Chapman, N. Ross
    Journal of the Acoustical Society of America, 2008, 123 (06):
  • [30] Bayesian geoacoustic inversion of ship noise on a horizontal array
    Tollefsen, Dag
    Dosso, Stan E.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2008, 124 (02): : 788 - 795