Geoacoustic Inversion for Bottom Parameters via Bayesian Theory in Deep Ocean

被引:3
|
作者
Guo, Xiao-Le [1 ,2 ]
Yang, Kun-De [1 ,2 ]
Ma, Yuan-Liang [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Minist Ind & Informat Technol, Key Lab Ocean Acoust & Sensing, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
GIBBS SAMPLER; UNCERTAINTY;
D O I
10.1088/0256-307X/34/3/034301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a new approach to estimating bottom parameters based on the Bayesian theory in deep ocean. The solution in a Bayesian inversion is characterized by its posterior probability density (PPD), which combines prior information about the model with information from an observed data set. Bottom parameters are sensitive to the transmission loss (TL) data in shadow zones of deep ocean. In this study, TLs of different frequencies from the South China Sea in the summer of 2014 are used as the observed data sets. The interpretation of the multidimensional PPD requires the calculation of its moments, such as the mean, covariance, and marginal distributions, which provide parameter estimates and uncertainties. Considering that the sensitivities of shallowzone TLs vary for different frequencies of the bottom parameters in the deep ocean, this research obtains bottom parameters at varying frequencies. Then, the inversion results are compared with the sampling data and the correlations between bottom parameters are determined. Furthermore, we show the inversion results for multi-frequency combined inversion. The inversion results are verified by the experimental TLs and the numerical results, which are calculated using the inverted bottom parameters for different source depths and receiver depths at the corresponding frequency.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Geoacoustic Inversion for Bottom Parameters via Bayesian Theory in Deep Ocean
    郭晓乐
    杨坤德
    马远良
    Chinese Physics Letters, 2017, 34 (03) : 74 - 78
  • [2] Geoacoustic Inversion for Bottom Parameters via Bayesian Theory in Deep Ocean
    郭晓乐
    杨坤德
    马远良
    Chinese Physics Letters, 2017, (03) : 74 - 78
  • [3] Bayesian Inversion for Geoacoustic Parameters from Ocean Bottom Reflection Loss
    Yang, Kunde
    Xiao, Peng
    Duan, Rui
    Ma, Yuanliang
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2017, 25 (03)
  • [4] WAVE-FORM INVERSION FOR THE GEOACOUSTIC PARAMETERS OF THE OCEAN BOTTOM
    RAJAN, SD
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1992, 91 (06): : 3228 - 3241
  • [5] Two-Step Inversion of Geoacoustic Parameters with Bottom Reverberation and Transmission Loss in the Deep Ocean
    Yang, Kunde
    Xu, Liya
    Yang, Qiulong
    Li, Ganxian
    ACOUSTICS AUSTRALIA, 2018, 46 (01) : 131 - 142
  • [6] Two-Step Inversion of Geoacoustic Parameters with Bottom Reverberation and Transmission Loss in the Deep Ocean
    Kunde Yang
    Liya Xu
    Qiulong Yang
    Ganxian Li
    Acoustics Australia, 2018, 46 : 131 - 142
  • [7] Geoacoustic Inversion Using Physical–Statistical Bottom Reverberation Model in the Deep Ocean
    Liya Xu
    Kunde Yang
    Qiulong Yang
    Acoustics Australia, 2019, 47 : 261 - 269
  • [8] Perspectives on Geoacoustic Inversion of Ocean Bottom Reflectivity Data
    Chapman, N. Ross
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2016, 4 (03):
  • [9] Geoacoustic Inversion Using Physical-Statistical Bottom Reverberation Model in the Deep Ocean
    Xu, Liya
    Yang, Kunde
    Yang, Qiulong
    ACOUSTICS AUSTRALIA, 2019, 47 (03) : 261 - 269
  • [10] Head wave data inversion for geoacoustic parameters of the ocean bottom off Vancouver Island
    Godin, OA
    Chapman, NR
    Laidlaw, MCA
    Hannay, DE
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1999, 106 (05): : 2540 - 2551