Identification and annotation of newly conserved microRNAs and their targets in wheat (Triticum aestivum L.)

被引:18
|
作者
Achakzai, Habibullah Khan [1 ]
Barozai, Muhammad Younas Khan [1 ]
Din, Muhammad [1 ]
Baloch, Iftekhar Ahmed [1 ]
Achakzai, Abdul Kabir Khan [1 ]
机构
[1] Univ Balochistan, Dept Bot, Quetta, Balochistan, Pakistan
来源
PLOS ONE | 2018年 / 13卷 / 07期
关键词
CYTOCHROME-C; STRESS TOLERANCE; DROUGHT STRESS; ARABIDOPSIS; GENES; PLANTS; OVEREXPRESSION; BIOGENESIS; DIVERGENCE; METABOLISM;
D O I
10.1371/journal.pone.0200033
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MicroRNAs (miRNAs) are small, non-coding and regulatory RNAs produce by cell endogenously. They are 18-26 nucleotides in length and play important roles at the posttranscriptional stage of gene regulation. Evolutionarily, miRNAs are conserved and their conservation plays an important role in the prediction of new miRNAs in different plants. Wheat (Triticum aestivum L.) is an important diet and consumed as second major crop in the world. This significant cereal crop was focused here through comparative genomics-based approach to identify new conserved miRNAs and their targeted genes. This resulted into a total of 212 new conserved precursor miRNAs (pre-miRNAs) belonging to 185 miRNA families. These newly profiled wheat's miRNAs are also annotated for stem-loop secondary structures, length distribution, organ of expression, sense/antisense orientation and characterization from their expressed sequence tags (ESTs). Moreover, fifteen miRNAs along with housekeeping gene were randomly selected and subjected to RT-PCR expressional validation. A total of 32927 targets are also predicted and annotated for these newly profiled wheat miRNAs. These targets are found to involve in 50 gene ontology (GO) enrichment terms and significant processes. Some of the significant targets are RNA-dependent DNA replication (GO:0006278), RNA binding (GO:0003723), nucleic acid binding (GO:0003676), DNA-directed RNA polymerase activity (GO:0003899), magnesium ion transmembrane transporter activity (GO:0015095), antiporter activity (GO:0015297), solute:hydrogen antiporter activity (GO:0015299), protein kinase activity (GO:0004672), ATP binding (GO:0005524), regulation of Rab GTPase activity (GO:0032313) Rab GTPase activator activity (GO:0005097), regulation of signal transduction (GO:0009966) and phosphoprotein phosphatase inhibitor activity (GO:0004864). These findings will be helpful to manage this economically important grain plant for desirable traits through miRNAs regulation.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] IDENTIFICATION OF GENETIC POLYMORPHISM AND DNA METHYLATION PATTERN IN WHEAT (Triticum aestivum L.)
    Tok, Dilek
    Senturk-Akfirat, Funda
    Sevinc, Duygu
    Aydin, Yildiz
    Altinkut-Uncuoglu, Ahu
    TURKISH JOURNAL OF FIELD CROPS, 2011, 16 (02) : 157 - 165
  • [32] Identification of Aegilops ovata chromosomes added to the wheat (Triticum aestivum L.) genome
    S. Landjeva
    G. Ganeva
    Cereal Research Communications, 1999, 27 : 55 - 61
  • [33] Genomic identification and characterization of MYC family genes in wheat (Triticum aestivum L.)
    Jian-fang Bai
    Yu-kun Wang
    Li-ping Guo
    Xiao-ming Guo
    Hao-yu Guo
    Shao-hua Yuan
    Wen-jing Duan
    Zihan Liu
    Chang-ping Zhao
    Feng-ting Zhang
    Li-ping Zhang
    BMC Genomics, 20
  • [34] Genomic identification and characterization of MYC family genes in wheat (Triticum aestivum L.)
    Bai, Jian-fang
    Wang, Yu-kun
    Guo, Li-ping
    Guo, Xiao-ming
    Guo, Hao-yu
    Yuan, Shao-hua
    Duan, Wen-jing
    Liu, Zihan
    Zhao, Chang-ping
    Zhang, Feng-ting
    Zhang, Li-ping
    BMC GENOMICS, 2019, 20 (01)
  • [35] Identification of Aegilops ovata chromosomes added to the wheat (Triticum aestivum L.) genome
    Landjeva, S
    Ganeva, G
    CEREAL RESEARCH COMMUNICATIONS, 1999, 27 (1-2) : 55 - 61
  • [36] Identification of structural variations related to drought tolerance in wheat (Triticum aestivum L.)
    Zhao, Jiajia
    Li, Xiaohua
    Qiao, Ling
    Zheng, Xingwei
    Wu, Bangbang
    Guo, Meijun
    Feng, Meichen
    Qi, Zengjun
    Yang, Wude
    Zheng, Jun
    THEORETICAL AND APPLIED GENETICS, 2023, 136 (03)
  • [37] ASAE pulping of wheat straw (Triticum aestivum L.)
    Usta, M.
    Eroglu, H.
    Karaoglu, C.
    Cellulose Chemistry and Technology, 33 (01): : 91 - 102
  • [38] Allelopathic studies of common wheat (Triticum aestivum L.)
    Ma, YQ
    WEED BIOLOGY AND MANAGEMENT, 2005, 5 (03) : 93 - 104
  • [39] Malting quality of winter wheat (Triticum aestivum L.)
    Psota, Vratislav
    Musilova, Marketa
    Sachambula, Lenka
    Horakova, Vladimira
    Prinosil, Ales
    Smid, Frantisek
    Adamkova, Karolina
    Adam, Martin
    KVASNY PRUMYSL, 2018, 64 (06): : 302 - 313
  • [40] ASAE pulping of wheat straw (Triticum aestivum L.)
    Usta, M
    Eroglu, H
    Karaoglu, C
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 1999, 33 (1-2): : 91 - 102