The pole dynamics of rational solutions of the viscous Burgers equation

被引:5
|
作者
Deconinck, Bernard
Kimura, Yoshifumi
Segur, Harvey
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[3] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
关键词
D O I
10.1088/1751-8113/40/20/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Rational solutions of the viscous Burgers equation are examined using the dynamics of their poles in the complex x-plane. The dynamical system for the motion of these poles is finite dimensional and not Hamiltonian. Nevertheless, we show that this finite-dimensional system is completely integrable, by explicit construction of a sufficient number of conserved quantities. The dynamical system has a class of non-equilibrium similarity solutions for which all poles have equal real part for t sufficiently large. Within the context of the finite-dimensional dynamical system these solutions are shown to be asymptotically stable.
引用
收藏
页码:5459 / 5467
页数:9
相关论文
共 50 条
  • [31] On the viscous Burgers equation on metric graphs and fractals
    Hinz, Michael
    Meinert, Melissa
    JOURNAL OF FRACTAL GEOMETRY, 2020, 7 (02) : 137 - 182
  • [32] Control and Sensitivity Reduction for a Viscous Burgers' Equation
    Allen, E.
    Burns, J. A.
    Gilliam, D. S.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 967 - 972
  • [33] A Liouville theorem for the viscous Burgers’s equation
    Carlos E. Kenig
    Frank Merle
    Journal d'Analyse Mathématique, 2002, 87 : 281 - 298
  • [34] Distributed and boundary control of the viscous Burgers' equation
    Ly, HV
    Mease, KD
    Titi, ES
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (1-2) : 143 - 188
  • [35] Boundary layer control for the viscous Burgers' equation
    Burns, JA
    Zietsman, L
    Myatt, JH
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 & 2, 2002, : 548 - 553
  • [36] Boundary and distributed control of the viscous Burgers equation
    Smaoui, N
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (01) : 91 - 104
  • [37] LOCAL STABILIZATION OF VISCOUS BURGERS EQUATION WITH MEMORY
    Akram, Wasim
    Mitra, Debanjana
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (03): : 939 - 973
  • [38] Analysis and Numerical Simulation of Viscous Burgers Equation
    Clark, H. R.
    Rincon, M. A.
    Silva, A.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) : 695 - 716
  • [39] A Liouville theorem for the viscous Burgers's equation
    Kenig, CE
    Merle, F
    JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1): : 281 - 298
  • [40] SEQUENCES OF SOLUTIONS OF BURGERS EQUATION
    RODIN, EY
    SIAM REVIEW, 1971, 13 (02) : 277 - &