Freestanding and Permeable Nanoporous Gold Membranes for Surface-Enhanced Raman Scattering

被引:13
|
作者
Wyss, Roman M. [1 ]
Parzefall, Markus [2 ]
Schlichting, Karl-Philipp [3 ]
Gruber, Cynthia M. [2 ]
Busschaert, Sebastian [2 ]
Lightner, Carin Rae [4 ]
Lortscher, Emanuel [5 ]
Novotny, Lukas [2 ]
Heeg, Sebastian [1 ,6 ]
机构
[1] Swiss Fed Inst Technol, Soft Mat Dept Mat, CH-8093 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Photon Lab, CH-8093 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Lab Thermodynam Emerging Technol, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[4] Swiss Fed Inst Technol, Opt Mat Engn Lab, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[5] IBM Res, CH-8803 Ruschlikon, Switzerland
[6] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany
基金
瑞士国家科学基金会;
关键词
porous gold membrane; suspended membrane; nanoscale mass transport; plasmonic nanopore; Raman scattering; SERS; graphene; GRAPHENE; SPECTROSCOPY; SINGLE; FILMS; SERS; RESONANCE; ARRAYS; LAYER;
D O I
10.1021/acsami.2c02608
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface-enhanced Raman spectroscopy (SERS) demands reliable, high-enhancement substrates in order to be used in different fields of application. Here we introduce freestanding porous gold membranes (PAuM) as easy-to-produce, scalable, mechanically stable, and effective SERS substrates. We fabricate large-scale sub-30 nm thick PAuM that form freestanding membranes with varying morphologies depending on the nominal gold thickness. These PAuM are mechanically stable for pressures up to more than 3 bar and exhibit surface-enhanced Raman scattering with local enhancement factors from 10(4) to 10(5), which we demonstrate by wavelength-dependent and spatially resolved Raman measurements using graphene as a local Raman probe. Numerical simulations reveal that the enhancement arises from individual, nanoscale pores in the membrane acting as optical slot antennas. Our PAuM are mechanically stable, provide robust SERS enhancement for excitation power densities up to 10(6) W cm(-2), and may find use as a building block in SERS-based sensing applications.
引用
收藏
页码:16558 / 16567
页数:10
相关论文
共 50 条
  • [31] Surface-Enhanced Raman Scattering Investigation of Hollow Gold Nanospheres
    Xie, Hai-nan
    Larmour, Iain A.
    Smith, W. Ewen
    Faulds, Karen
    Graham, Duncan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14): : 8338 - 8342
  • [32] Surface-enhanced Raman scattering studies on aggregated gold nanorods
    Nikoobakht, B
    El-Sayed, MA
    JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (18): : 3372 - 3378
  • [33] Optimized surface-enhanced Raman scattering on gold nanoparticle arrays
    Félidj, N
    Aubard, J
    Lévi, G
    Krenn, JR
    Hohenau, A
    Schider, G
    Leitner, A
    Aussenegg, FR
    APPLIED PHYSICS LETTERS, 2003, 82 (18) : 3095 - 3097
  • [34] Charge-transfer contribution to surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering of dyes at silver and gold electrodes
    Kudelski, A
    Bukowska, J
    CHEMICAL PHYSICS LETTERS, 1996, 253 (3-4) : 246 - 250
  • [35] Aligned gold nanoneedle arrays for surface-enhanced Raman scattering
    Yang, Yong
    Tanemura, Masaki
    Huang, Zhengren
    Jiang, Dongliang
    Li, Zhi-Yuan
    Huang, Ying-ping
    Kawamura, Go
    Yamaguchi, Kohei
    Nogami, Masayuki
    NANOTECHNOLOGY, 2010, 21 (32)
  • [36] Surface-Enhanced Raman Scattering
    Culha, Mustafa
    Lavrik, Nickolay
    Cullum, Brian M.
    Astilean, Simion
    JOURNAL OF NANOTECHNOLOGY, 2012, 2012
  • [37] Surface-enhanced Raman scattering
    Vo-Dinh, Tuan
    Yan, Fei
    Optical Chemical Sensors, 2006, 224 : 239 - 259
  • [38] Surface-enhanced Raman scattering
    Kneipp, Katrin
    PHYSICS TODAY, 2007, 60 (11) : 40 - 46
  • [39] Surface-enhanced Raman scattering
    Campion, A
    Kambhampati, P
    CHEMICAL SOCIETY REVIEWS, 1998, 27 (04) : 241 - 250
  • [40] Surface-enhanced Raman scattering
    Graham, Duncan
    van Duyne, Richard
    Ren, Bin
    ANALYST, 2016, 141 (17) : 4995 - 4995