A numerical method for SDEs with discontinuous drift

被引:43
|
作者
Leobacher, Gunther [1 ]
Szoelgyenyi, Michaela [1 ]
机构
[1] Johannes Kepler Univ Linz, Dept Financial Math & Appl Number Theory, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
Stochastic differential equations; Discontinuous drift; Numerical methods for stochastic differential equations; EQUATIONS;
D O I
10.1007/s10543-015-0549-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we introduce a transformation technique, which can on the one hand be used to prove existence and uniqueness for a class of SDEs with discontinuous drift coefficient. One the other hand we present a numerical method based on transforming the Euler-Maruyama scheme for such a class of SDEs. We prove convergence of order . Finally, we present numerical examples.
引用
收藏
页码:151 / 162
页数:12
相关论文
共 50 条
  • [21] Forward-backward SDEs with discontinuous coefficients
    Chen, Jianfu
    Ma, Jin
    Yin, Hong
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (02) : 274 - 294
  • [22] A splitting method for SDEs with locally Lipschitz drift: Illustration on the FitzHugh-Nagumo model
    Buckwar, Evelyn
    Samson, Adeline
    Tamborrino, Massimiliano
    Tubikanec, Irene
    APPLIED NUMERICAL MATHEMATICS, 2022, 179 : 191 - 220
  • [23] Estimates for the density of functionals of SDEs with irregular drift
    Kohatsu-Higa, Arturo
    Makhlouf, Azmi
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (05) : 1716 - 1728
  • [24] Strong solutions for functional SDEs with singular drift
    Huang, Xing
    STOCHASTICS AND DYNAMICS, 2018, 18 (02)
  • [25] Holder Flow and Differentiability for SDEs with Nonregular Drift
    Fedrizzi, E.
    Flandoli, F.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2013, 31 (04) : 708 - 736
  • [26] QUADRATIC TRANSPORTATION INEQUALITIES FOR SDES WITH MEASURABLE DRIFT
    Bahlali, Khaled
    Mouchtabih, Soufiane
    Tangpi, Ludovic
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (08) : 3583 - 3596
  • [27] A fast convergent numerical method for matrix sign function with application in SDEs
    Soheili, Ali R.
    Toutounian, F.
    Soleymani, F.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 282 : 167 - 178
  • [28] On polynomial mixing for SDEs with a gradient-type drift
    Veretennikov, AY
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2000, 45 (01) : 160 - 164
  • [29] STRONG UNIQUENESS FOR SDES IN HILBERT SPACES WITH NONREGULAR DRIFT
    Da Prato, G.
    Flandoli, F.
    Rockner, M.
    Veretennikov, A. Yu.
    ANNALS OF PROBABILITY, 2016, 44 (03): : 1985 - 2023
  • [30] Benchmarking the numerical Discontinuous Deformation Analysis method
    Yagoda-Biran, Gony
    Hatzor, Yossef H.
    COMPUTERS AND GEOTECHNICS, 2016, 71 : 30 - 46