Graph Laplacian Regularized Sparse Representation for Image Denoising

被引:0
|
作者
Zhu, Jinxiu [1 ]
Zhang, Yan [1 ]
Cheng, Hao [1 ]
Pei, Ying [1 ]
Zhang, Yao [1 ]
机构
[1] Hohai Univ, Coll Internet Things Engn, Changzhou, Peoples R China
关键词
graph Laplacian; image denoising; K-SVD; sparse representation; EIGENVECTORS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a sparse representation model using the eigenvectors of the graph Laplacian, called Graph Laplacian based sparse representation (GL-SR), for image denoising. In this model, the high-order eigenvectors of graph Laplacian are introduced into the traditional sparse model as a regularization, and then the solution of the corresponding model is efficiently presented. Moreover, a denoising framework based on the GL-SR is further given. In details, the noisy patches are firstly clustered into several categories to enhance the structure relationship among them. Then, the eigenvectors of the graph Laplacian are obtained with the high-order ones carefully selected. A sparse model is sequently presented with these high-order eigenvectors as a regularization term. Finally, the proposed model is well solved by employing the solution of double sparse model. Experiments show the proposed method can achieve a better performance than some sparse-based methods, especially in the noise of large deviations.
引用
收藏
页码:687 / 691
页数:5
相关论文
共 50 条
  • [41] Fractional-order Sparse Representation for Image Denoising
    Geng, Leilei
    Ji, Zexuan
    Yuan, Yunhao
    Yin, Yilong
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2018, 5 (02) : 555 - 563
  • [42] An Improved Sparse Representation Model for Robust Image Denoising
    Cui, Zhi
    Cui, Xianpu
    IAEDS15: INTERNATIONAL CONFERENCE IN APPLIED ENGINEERING AND MANAGEMENT, 2015, 46 : 175 - 180
  • [43] Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain
    Pang, Jiahao
    Cheung, Gene
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) : 1770 - 1785
  • [44] Fractional-order Sparse Representation for Image Denoising
    Leilei Geng
    Zexuan Ji
    Yunhao Yuan
    Yilong Yin
    IEEE/CAAJournalofAutomaticaSinica, 2018, 5 (02) : 555 - 563
  • [45] Simultaneous image fusion and denoising with adaptive sparse representation
    Liu, Yu
    Wang, Zengfu
    IET IMAGE PROCESSING, 2015, 9 (05) : 347 - 357
  • [46] Image denoising based on sparse representation and gradient histogram
    Zhang, Mingli
    Desrosiers, Christian
    IET IMAGE PROCESSING, 2017, 11 (01) : 54 - 63
  • [47] Image Denoising by Deep Convolution Based on Sparse Representation
    Bian, Shengqin
    He, Xinyu
    Xu, Zhengguang
    Zhang, Lixin
    COMPUTERS, 2023, 12 (06)
  • [48] SAR image denoising method based on sparse representation
    Zhou, Hao-Tian
    Chen, Liang
    Fu, Bo
    Shi, Hao
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (20): : 7153 - 7156
  • [49] Superpixel-Based Graph Laplacian Regularized and Weighted Robust Sparse Unmixing
    Zou, Xin
    Xu, Mingming
    Liu, Shanwei
    Sheng, Hui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [50] GRAPH LAPLACIAN REGULARIZED SPECTRAL-SPATIAL-SPARSE UNMIXING FOR HYPERSPECTRAL IMAGERY
    Li, Zhi
    Feng, Ruyi
    Shi, Yichang
    Wang, Lizhe
    Zhong, Yanfei
    Zhang, Liangpei
    Zeng, Tieyong
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1608 - 1611