Dynamical charge susceptibility in the Hubbard model

被引:13
|
作者
Dong, Xinyang [1 ]
Chen, Xi [1 ,2 ]
Gull, Emanuel [1 ,2 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
基金
美国国家科学基金会;
关键词
OPTICAL CONDUCTIVITY; FLUCTUATING STRIPES; SPECTRAL-FUNCTION; PSEUDOGAP; STATE; INSULATORS; SYMMETRY; ORDER; HOLE;
D O I
10.1103/PhysRevB.100.235107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We compute the dynamical charge susceptibility in the two-dimensional Hubbard model within the dynamical cluster approximation. In order to understand the connection between charge susceptibility and pseudogap, we investigate the momentum, doping, and temperature dependence. We find that as a function of frequency, the dynamical charge susceptibility is well represented by a single peak at a characteristic frequency. It shows little momentum or temperature dependence, while the doping dependence is more evident, and no clear signature of the pseudogap is observed. Data for the doping evolution of the static susceptibility and for fluctuation diagnostics are presented. Our susceptibilities should be directly measurable in future Momentum-resolved electron energy-loss spectroscopy experiments.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Dynamical Model and Path Integral Formalism for Hubbard Operators
    A. Foussats
    A. Greco
    O. S. Zandron
    International Journal of Theoretical Physics, 1999, 38 : 1439 - 1453
  • [32] DYNAMICAL PROPERTIES OF HUBBARD MODEL AND CONTINUAL INTEGRATION METHOD
    REPKE, G
    FRAUENKHEIM, T
    FIZIKA TVERDOGO TELA, 1976, 18 (07): : 1834 - 1840
  • [33] Dynamical incommensurability in the 2D Hubbard model
    Avella, A
    Mancini, F
    Villani, D
    PHYSICA B-CONDENSED MATTER, 1999, 259-61 : 732 - 733
  • [34] Dynamical t/U Expansion of the Doped Hubbard Model
    丁文新
    俞榕
    Chinese Physics Letters, 2024, 41 (03) : 78 - 87
  • [35] Dynamical t/U Expansion of the Doped Hubbard Model
    Ding, Wenxin
    Yu, Rong
    CHINESE PHYSICS LETTERS, 2024, 41 (03)
  • [36] Spin and charge ordering in the dimerized Hubbard model
    Caprara, S
    Avignon, M
    Navarro, O
    PHYSICAL REVIEW B, 2000, 61 (23): : 15667 - 15675
  • [37] Minimal charge gap in the ionic Hubbard model
    Pozgajcic, K
    Gros, C
    PHYSICAL REVIEW B, 2003, 68 (08):
  • [38] Charge glass in an extended dimer Hubbard model
    Deglint, Meldon B.
    Akella, Krishant
    Kennett, Malcolm P.
    PHYSICAL REVIEW B, 2022, 106 (08)
  • [39] Dynamical correlation-hole approach to the Hubbard model
    Refolio, MC
    Sancho, JML
    Rubio, J
    Sancho, MPL
    PHYSICAL REVIEW B, 1999, 59 (08): : 5384 - 5397
  • [40] DYNAMICAL PROPERTIES OF THE D=INFINITY HUBBARD-MODEL
    HIRASHIMA, DS
    PHYSICAL REVIEW B, 1993, 47 (23) : 15428 - 15436