On the adjacent vertex-distinguishing total chromatic numbers of the graphs with Δ(G)=3

被引:75
|
作者
Wang, Haiying [1 ]
机构
[1] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
关键词
the adjacent vertex-distinguishing total coloring; the adjacent vertex-distinguishing total chromatic number; subdivision vertex; subdivision graph;
D O I
10.1007/s10878-006-9038-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let G = (V(G), E(G)) be a simple graph and T (G) be the set of vertices and edges of G. Let C be a k-color set. A (proper) total k-coloring f of G is a function f : T (G) -> C such that no adjacent or incident elements of T (G) receive the same color. For any u is an element of V(G), denote C(u) = {f (u)} boolean OR {f (uv)vertical bar uv is an element of E(G)}. The total k-coloring f of G is called the adjacent vertex-distinguishing if C(u) not equal C(v) for any edge uv. E(G). And the smallest number of colors is called the adjacent vertex-distinguishing total chromatic number chi(at) (G) of G. In this paper, we prove that chi(at) (G) = 6 for all connected graphs with maximum degree three. This is a step towards a conjecture on the adjacent vertex-distinguishing total coloring.
引用
收藏
页码:87 / 109
页数:23
相关论文
共 50 条
  • [41] An improved upper bound on the adjacent vertex distinguishing total chromatic number of graphs
    Vuckovic, Bojan
    DISCRETE MATHEMATICS, 2018, 341 (05) : 1472 - 1478
  • [42] Vertex-Distinguishing E-Total Colorings of Graphs
    Xiang’en Chen
    Yue Zu
    Jin Xu
    Zhiwen Wang
    Bing Yao
    Arabian Journal for Science and Engineering, 2011, 36 : 1485 - 1500
  • [43] Vertex-distinguishing I-total colorings of graphs
    Chen, Xiang'en
    Li, Ze-peng
    UTILITAS MATHEMATICA, 2014, 95 : 319 - 327
  • [44] A note on the vertex-distinguishing proper total coloring of graphs
    Li, Jingwen
    Wang, Zhiwen
    Zhang, Zhongfu
    Zhu, Enqiang
    Wan, Fei
    Wang, Hongjie
    ARS COMBINATORIA, 2010, 96 : 421 - 423
  • [45] On the adjacent vertex distinguishing edge chromatic number of graphs
    Wang, Zhiwen
    ARS COMBINATORIA, 2016, 124 : 379 - 388
  • [46] Adjacent vertex-distinguishing total colorings of Ks V Kt
    Feng, Yun
    Lin, Wensong
    Lin, W. (wslin@seu.edu.cn), 1600, Southeast University (29): : 226 - 228
  • [47] Adjacent vertex-distinguishing edge coloring of 2-degenerate graphs
    Yi Wang
    Jian Cheng
    Rong Luo
    Gregory Mulley
    Journal of Combinatorial Optimization, 2016, 31 : 874 - 880
  • [48] OPTIMAL ADJACENT VERTEX-DISTINGUISHING EDGE-COLORINGS OF CIRCULANT GRAPHS
    Gravier, Sylvain
    Signargout, Hippolyte
    Slimani, Souad
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1341 - 1359
  • [49] Adjacent vertex-distinguishing edge coloring of 2-degenerate graphs
    Wang, Yi
    Cheng, Jian
    Luo, Rong
    Mulley, Gregory
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (02) : 874 - 880
  • [50] General vertex-distinguishing total coloring of complete bipartite graphs
    Yang, Hong
    ARS COMBINATORIA, 2016, 125 : 371 - 379