Communications: Explicitly correlated second-order Moller-Plesset perturbation method for extended systems

被引:37
|
作者
Shiozaki, Toru [1 ,2 ,3 ,4 ,5 ,6 ]
Hirata, So [3 ,4 ,5 ,6 ]
机构
[1] Univ Tokyo, Dept Appl Chem, Sch Engn, Tokyo 1138656, Japan
[2] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan
[3] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA
[4] Univ Florida, Dept Phys, Quantum Theory Project, Gainesville, FL 32611 USA
[5] Univ Florida, Ctr Macromol Sci & Engn, Dept Chem, Gainesville, FL 32611 USA
[6] Univ Florida, Ctr Macromol Sci & Engn, Dept Phys, Gainesville, FL 32611 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2010年 / 132卷 / 15期
基金
日本学术振兴会; 美国国家科学基金会;
关键词
electron correlations; HF calculations; perturbation theory; polymers; COUPLED-CLUSTER THEORY; AUXILIARY BASIS-SETS; PERIODIC-SYSTEMS; CORRELATION CUSP; TERMS; RESOLUTION; IDENTITY; ENERGY; INCLUSION; CARE;
D O I
10.1063/1.3396079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A formalism for the second-order Moller-Plesset perturbation method employing basis functions that depend explicitly on electron-electron distances (the MP2-R12 or F12 method) is derived and implemented into computer codes for extended systems periodic in one dimension. The excitation amplitudes on these functions are held fixed at values that satisfy the first-order cusp condition. Necessary many-electron integrals over Gaussian-type functions involving Slater-type geminals are evaluated by means of the resolution-of-the-identity approximation with a complementary auxiliary basis set. These integrals and thus the final correlation energy are shown to have the correct size dependence. The valence MP2 correlation energy of polyethylene near the complete basis-set limit is obtained and shown to be considerably greater in magnitude than the value obtained without the R12 treatment.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] MOLLER-PLESSET CALCULATIONS WITH EXPLICITLY CORRELATED WAVE-FUNCTIONS
    KUTZELNIGG, W
    KLOPPER, W
    NUMERICAL DETERMINATION OF THE ELECTRONIC STRUCTURE OF ATOMS, DIATOMIC AND POLYATOMIC MOLECULES, 1989, 271 : 289 - 293
  • [32] The second-order Moller-Plesset limit for the barrier to linearity of water
    Valeev, EF
    Allen, WD
    Schaefer, HF
    Császár, AG
    JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (07): : 2875 - 2878
  • [33] Second Order Local Moller-Plesset Perturbation Theory for Periodic Systems: the CRYSCOR Code
    Usvyat, Denis
    Maschio, Lorenzo
    Pisani, Cesare
    Schuetz, Martin
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2010, 224 (3-4): : 441 - 454
  • [34] Optimised Thouless expansion second-order MOller-Plesset theory
    Simunek, Jan
    Noga, Jozef
    MOLECULAR PHYSICS, 2013, 111 (9-11) : 1119 - 1128
  • [35] Tensor factorizations of local second-order Moller-Plesset theory
    Yang, Jun
    Kurashige, Yuki
    Manby, Frederick R.
    Chan, Garnet K. L.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (04):
  • [36] Second-order Moller-Plesset calculations with dual basis sets
    Wolinski, K
    Pulay, P
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (21): : 9497 - 9503
  • [37] Hypergeometic resummation of the Moller-Plesset perturbation series for strongly correlated systems
    Patel, Anand
    Abbas, Nadin
    Gonzalez-Espinoza, Cristina E.
    Ayers, Paul
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [38] Analytic energy gradient for second-order Moller-Plesset perturbation theory based on the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Ishimura, Kazuya
    Kitaura, Kazuo
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (04):
  • [39] Application of Gaussian-type geminals in local second-order Moller-Plesset perturbation theory
    Polly, Robert
    Werner, Hans-Joachim
    Dahle, Pal
    Taylor, Peter R.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (23):
  • [40] Calculation of frequency-dependent polarizabilities and hyperpolarizabilities by the second-order Moller-Plesset perturbation theory
    Aiga, F
    Itoh, R
    CHEMICAL PHYSICS LETTERS, 1996, 251 (5-6) : 372 - 380